(1)試判斷數(shù)列是否為等比數(shù)列?若不是.說明理由?若是.求出通項(xiàng), 查看更多

 

題目列表(包括答案和解析)

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足=2(a>0,且a≠1),設(shè)y3=18, y6=12.

(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少?

(2)試判斷是否存在自然數(shù)M,使得當(dāng)n>M時(shí),xn>1恒成立,若存在,求出相應(yīng)的M;若不存在,請說明理由;

(3)令試比較的大小.

 

查看答案和解析>>

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足
yn
logaxn
=2
(a>0,且a≠1),設(shè)y3=18,y6=12.
(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值是多少?
(2)試判斷是否存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,若存在,求出最小的自然數(shù)M,若不存在,請說明理由.

查看答案和解析>>

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù).

數(shù)列{yn}滿足=2(a>0,且a≠1),設(shè)y3=18, y6=12.

(1)試問數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少?

(2)試判斷是否存在自然數(shù)M,使得當(dāng)n>M時(shí),xn>1恒成立,若存在,求出相應(yīng)的M;若不存在,請說明理由.

查看答案和解析>>

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足=2(a>0,且a≠1),設(shè)y3=18,y6=12.

(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值為多少?

(2)試判斷是否存在自然數(shù)M,使得當(dāng)n>M時(shí),xn>1恒成立?若存在,求出相應(yīng)的M;若不存在,請說明理由.

(3)令an=(n>13,n∈N),試比較an與an+1的大小.

查看答案和解析>>

已知等比數(shù)列{xn}的各項(xiàng)為不等于1的正數(shù),數(shù)列{yn}滿足(a>0,且a≠1),設(shè)y3=18,y6=12.
(1)數(shù)列{yn}的前多少項(xiàng)和最大,最大值是多少?
(2)試判斷是否存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,若存在,求出最小的自然數(shù)M,若不存在,請說明理由.

查看答案和解析>>

一、選擇題

1、B      

2、A    

3、D  ④少了“”這個(gè)條件,其余3個(gè)是正確的。

4、B      

5、C  取AC的中點(diǎn)O,則  四面體ABCD外接球的球心為O,半徑為 

6、D  設(shè)

7、D  由題意知,P點(diǎn)的軌跡為拋物線,以AB的中點(diǎn)為原點(diǎn),AB所在直線為軸或軸可得四個(gè)標(biāo)準(zhǔn)方程

8、A 

9、A  ,1,-1是方程的兩根

10、C  若無最小值

當(dāng)  有最小值等價(jià)于

有大于0的最小值,即

11、C      

  直線AB的斜率為1

當(dāng)過C點(diǎn)的切線與AB平行時(shí),面積取最大值設(shè)此直線方程為

    

  C到AB距離為

12、C  的整數(shù)解為

這8個(gè)點(diǎn)兩兩所連的不過原點(diǎn)的直線有24條,過這8個(gè)點(diǎn)的切線有8條,每條直線確定了唯一的有序數(shù)對,共有32條。

二、填空題

13、 

 

14、    取AD中點(diǎn)E,連  為菱形,且

在側(cè)面

上的投影,為所求,

15、 0  

為偶函數(shù) 

16、 ②④   ①錯(cuò)  ②對

 ③錯(cuò) 

 當(dāng)且僅當(dāng)取等號(hào)  ④對

三、解答題

17、(1)

  即時(shí) 有最大值

(2)

18、(1)該愛好者得2分的概率為

(2)答對題的個(gè)數(shù)為,得分為,的可能取值為0,2,4,8

 

  

的分布列為

0

2

4

8

P

的數(shù)學(xué)期望為

以D為原點(diǎn),DA、DC、DP分別為軸建系如圖,

19、(1)       

  為平面PAD的一個(gè)法向量

    

(2) 

(3)由(1)知為平面的一個(gè)法向量,

設(shè)平面的法向量為

 即二面角的余弦值為

20、(1)

 當(dāng)   當(dāng)

上單增

處取得極小值

    

的最大值為  最小值為

(2)由(1)知當(dāng)

故對任意

只要對任意恒成立,即恒成立

    

實(shí)數(shù)的取值范圍是

21、(1)

  當(dāng)

不是等比數(shù)列,當(dāng)時(shí), 數(shù)列是等比數(shù)列

且公比為2,

(2)由(1)知當(dāng)

 1°

  2°

1°-2°及-

              

              

22、(1)設(shè)橢圓C的方程為

橢圓C的方程為

(2)由

  設(shè)與橢圓C交點(diǎn)為

消去得 

    

  由①得

    

綜上所述

 


同步練習(xí)冊答案