橢圓C的中心在原點(diǎn)O.焦點(diǎn)在軸上.焦點(diǎn)到相應(yīng)準(zhǔn)線(xiàn)的距離以及離心率均為.直線(xiàn)與軸交于點(diǎn)與橢圓C交于相異兩點(diǎn)A.B且.(1)求橢圓方程, 查看更多

 

題目列表(包括答案和解析)

橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸,它的短軸長(zhǎng)為2,過(guò)焦點(diǎn)與x軸垂直的直線(xiàn)與橢圓C相交于A,B兩點(diǎn)且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)定點(diǎn)N(1,0)的直線(xiàn)l交橢圓C于C、D兩點(diǎn),交y軸于點(diǎn)P,若
PC
 1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸,它的短軸長(zhǎng)為2,過(guò)焦點(diǎn)與x軸垂直的直線(xiàn)與橢圓C相交于A,B兩點(diǎn)且|AB|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)定點(diǎn)N(1,0)的直線(xiàn)l交橢圓C于C、D兩點(diǎn),交y軸于點(diǎn)P,若
PC
1
CN
,
PD
=λ2
DN
,求證:λ12為定值.

查看答案和解析>>

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在軸上,其離心率, 過(guò)點(diǎn)C(-1,0)的直線(xiàn)與橢圓E相交于A、B兩點(diǎn),且滿(mǎn)足點(diǎn)C分向量的比為2.

(1)用直線(xiàn)的斜率k ( k≠0 ) 表示△OAB的面積;(2)當(dāng)△OAB的面積最大時(shí),求橢圓E的方程。

查看答案和解析>>

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=
2
3
,過(guò)點(diǎn)C(-1,0)的直線(xiàn)l交橢圓于A、B兩點(diǎn),且滿(mǎn)足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線(xiàn)l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問(wèn):實(shí)數(shù)λ和直線(xiàn)l的斜率k(k∈R)分別為何值時(shí),橢圓E的短半軸長(zhǎng)取得最大值?并求出此時(shí)的橢圓方程.

查看答案和解析>>

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=,過(guò)點(diǎn)C(-1,0)的直線(xiàn)交橢圓于A,B兩點(diǎn),且滿(mǎn)足,為常數(shù)。

(1)當(dāng)直線(xiàn)的斜率k=1且時(shí),求三角形OAB的面積.

(2)當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案