題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題(每小題5 分,共40 分)
DACDA DBA
二、填空題(每小題5 分,共35分)
9. 10.400 11.180 12.②④
13. 14.(i)(3分) (ii)(2分)
15.(i)(3分); (ii) (2分)
16.(1)
當(dāng)
……………………4分
(2)令 ………………6分
解得:
所以,的單調(diào)遞增區(qū)間是…………8分
(3)由,……………………10分
所以,
解得:
所以,的取值集合……12分
17.解:(1)坐A 班車的三人中恰有2 人正點(diǎn)到達(dá)的概率為
P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)
(2)記“A 班車正點(diǎn)到達(dá)”為事件M,“B 班車正點(diǎn)到達(dá)冶為事件N
則兩人中至少有一人正點(diǎn)到達(dá)的概率為
P = P(M?N)+ P(M?)+ P(?N)
= 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)
18.解:由已知得
所以數(shù)列{}是以1為首項(xiàng),公差為1的等差數(shù)列;(2分)
即=1+…………………………4分
(2)由(1)知 ……………………6分
…………………………8分
……………………10分
所以:…………………………12分
19.解:M、N、Q、B的位置如右圖示。(正確標(biāo)出給1分)
(1)∵ND//MB且ND=MB
∴四邊形NDBM為平行四邊形
∴MN//DB………………3分
∴BD平面PBD,MN
∴MN//平面PBD……………………4分
(2)∵QC⊥平面ABCD,BD平面ABCD,
∴BD⊥QC……………………5分
又∵BD⊥AC,
∴BD⊥平面AQC…………………………6分
∵AQ面AQC
∴AQ⊥BD,同理可得AQ⊥PB,
∵BDPD=B
∴AQ⊥面PDB……………………………8分
|