即為上的減函數.∴.故時.. --12分 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數

(I)若函數在區(qū)間上存在極值,求實數a的取值范圍;

(II)當時,不等式恒成立,求實數k的取值范圍.

(Ⅲ)求證:解:(1),其定義域為,則,

,

時,;當時,

在(0,1)上單調遞增,在上單調遞減,

即當時,函數取得極大值.                                       (3分)

函數在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則

,即上單調遞增,                          (7分)

,從而,故上單調遞增,       (7分)

          (8分)

(3)由(2)知,當時,恒成立,即,

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

,

                           

                                        (12分)

 

查看答案和解析>>


同步練習冊答案