①-②得: 所以,所求通項(xiàng)為----5分 查看更多

 

題目列表(包括答案和解析)

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和

(2)求數(shù)列的前n項(xiàng)和;

(3)證明:不等式  對(duì)任意的,都成立.

【解析】第一問(wèn)中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問(wèn)中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問(wèn)中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時(shí),

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對(duì)任意的都成立.

 

查看答案和解析>>

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫(xiě)出S3的所有可能值;
(2)若生成數(shù)列{an}的通項(xiàng)公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn
(3)用數(shù)學(xué)歸納法證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫(xiě)出S3的所有可能值;
(2)若生成數(shù)列{an}的通項(xiàng)公式為an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn;
(3)用數(shù)學(xué)歸納法證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

對(duì)于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項(xiàng)的符號(hào),得到的新數(shù)列{an}稱為數(shù)列{An}的一個(gè)生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項(xiàng)的符號(hào)可以得到一個(gè)生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)寫(xiě)出S3的所有可能值;
(2)若生成數(shù)列{an}滿足:S3n=
1
7
(1-
1
8n
)
,求{an}的通項(xiàng)公式;
(3)證明:對(duì)于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

2007年12月29日第十屆全國(guó)人大常委會(huì)第三十一次會(huì)議表決通過(guò)了《關(guān)于修改〈中華人民共和國(guó)個(gè)人所得稅法〉的決定》,將個(gè)人所得稅工資、薪金所得減除費(fèi)用標(biāo)準(zhǔn)由每月1600元提高到每月2000元,同時(shí)明確自2008年3月1日起施行.即公民全月工資,薪金所得不超過(guò)2000元的部分不必納稅,超過(guò)2000元的部分應(yīng)納稅,此項(xiàng)稅款按下表分段累進(jìn)計(jì)算:

注明:上表中“全月應(yīng)納稅所得額”是從月工資、薪金收入中減去2000元后的余額.例如某人月工資、薪金收入為3000元,減去2000元,應(yīng)納稅所得額為1000元,由稅率表知其中500元稅率為5%,另外500元的稅率為10%,所以此人應(yīng)納個(gè)人所得稅為500×5%+500×10%=75元.

(1)請(qǐng)寫(xiě)出月工資,薪金的個(gè)人所得稅y關(guān)于工資,薪金收入x(0<x≤5000)的函數(shù)表達(dá)式;

(2)某高中數(shù)學(xué)教師在2008年10月份繳納的個(gè)人所得稅是40元,試求他這個(gè)月的工資,薪金收入是多少?

查看答案和解析>>


同步練習(xí)冊(cè)答案