16.已知函數(shù)的最小正周期為. (I)求函數(shù)的表達(dá)式, 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)A、B兩城相距100 km,在兩地之間距A城x (km)處建一核電站給A、B兩城供電,為保證城市安全,核電站距城市距離不得少于10km。已知供電費(fèi)用等于供電距離(km)的平方與供電量(億度)之積的0.25倍,若A城供電量為每月20億度,B城為每月10億度。

 (1)求x的取值范圍;(2)把月供電總費(fèi)用y表示成x的函數(shù); (3)核電站建在距A城多遠(yuǎn),才能使供電總費(fèi)用y最小。

查看答案和解析>>

(本題滿分12分)、兩城相距100km,在兩地之間 (直線AB上)距km處的地建一核電站給、兩城供電,為保證城市安全,核電站與城市距離不得少于10km.已知供電費(fèi)用與供電距離的平方和供電量之積成正比,比例系數(shù)為0.3,若城供電量為20億度/月,城為10億度/月.

(1)求月供電總費(fèi)用表示成的函數(shù);

(2)核電站建在距A城多遠(yuǎn),才能使供電費(fèi)用最?

 

查看答案和解析>>

(本題滿分12分)圍建一個(gè)面積為360㎡的矩形場地,要求矩形場地的一面利用舊墻(利用的舊墻需維修),其它三面圍墻要新建,在舊墻對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示。已知舊墻的維修費(fèi)用為45元/m ,新墻的造價(jià)為180元/m ,設(shè)利用的舊墻的長度為(單位:m), 修建此矩形場地圍墻的總費(fèi)用為(單位:元)。

(1)將表示為的函數(shù);

(2)試確定,使修建此矩形場地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

 

 

查看答案和解析>>

(本題滿分12分)、兩城相距100km,在兩地之間 (直線AB上)距km處的地建一核電站給兩城供電,為保證城市安全,核電站與城市距離不得少于10km.已知供電費(fèi)用與供電距離的平方和供電量之積成正比,比例系數(shù)為0.3,若城供電量為20億度/月,城為10億度/月.

(1)求月供電總費(fèi)用表示成的函數(shù);

(2)核電站建在距A城多遠(yuǎn),才能使供電費(fèi)用最?

查看答案和解析>>

(本題滿分12分)

A、B兩城相距100 km,在兩地之間距A城x (km)處建一核電站給A、B兩城供電,為保證城市安全,核電站距城市距離不得少于10km。已知供電費(fèi)用等于供電距離(km)的平方與供電量(億度)之積的0.25倍,若A城供電量為每月20億度,B城為每月10億度。

   (1)求x的取值范圍;

   (2)把月供電總費(fèi)用y表示成x的函數(shù);

   (3)核電站建在距A城多遠(yuǎn),才能使供電總費(fèi)用y最小。

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答題

16.解:(I)

       又,∴,   ……5分

     (II)

   

17.解:(Ⅰ) 拋擲一次出現(xiàn)的點(diǎn)數(shù)共有6×6 = 36種不同結(jié)果,其中“點(diǎn)數(shù)之和為7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6個(gè)結(jié)果,

∴拋擲一次出現(xiàn)的點(diǎn)數(shù)之和為7的概率為 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列為

ξ

1

2

3

4

P

<tbody id="i6af2"></tbody>

      • …… 6分

        Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

        (Ⅱ) 不限制兩人拋擲的次數(shù),甲獲勝的概率為:

         P =+ ()2×+ ()4×+ … = .      ………… 12分

         

        18.解:解:(1)它是有一條側(cè)棱垂直于底面的四棱錐      … 3分

        (注:評(píng)分注意實(shí)線、虛線;垂直關(guān)系;長度比例等)

        (2)由(1)得,6ec8aac122bd4f6e,6ec8aac122bd4f6e,得6ec8aac122bd4f6e

        6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e,6ec8aac122bd4f6e

        6ec8aac122bd4f6e…………6分

        6ec8aac122bd4f6e

        6ec8aac122bd4f6e………8分

        又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

        ∴二面角6ec8aac122bd4f6e的平面角為6ec8aac122bd4f6e… ………8分

        (3)解略。 

        19.(I)證明:   ∵  ∴   ∵,

        是首項(xiàng)為2,公差為1的等差數(shù)列.       …………3分

        (II)解:=,     …6分

          =.   …7分

        (III)證明: ,

        .       …… 9分

            .…………12分

        20.解(Ⅰ)∵6ec8aac122bd4f6e過(0,0)    則6ec8aac122bd4f6e

        ∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

        將C點(diǎn)坐標(biāo)代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

        ∴橢圓m:6ec8aac122bd4f6e  …………5分

        (Ⅱ)由條件D(0,-2)  ∵M(jìn)(0,t)

        1°當(dāng)k=0時(shí),顯然-2<t<2  …………6分

        2°當(dāng)k≠0時(shí),設(shè)6ec8aac122bd4f6e

        6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

        由△>0  可得  6ec8aac122bd4f6e   ①

        設(shè)6ec8aac122bd4f6e

        6ec8aac122bd4f6e     6ec8aac122bd4f6e   

        6ec8aac122bd4f6e           …………10分

        6ec8aac122bd4f6e 

        6ec8aac122bd4f6e   ②

        ∴t>1  將①代入②得   1<t<4

        ∴t的范圍是(1,4)。綜上t∈(-2,4)  ………………13分

         

        21.解: (1) 依題知,得:,的方程為,

         即直線的方程是 ………………… 6分

        (2)  證明:由(1)得

        ①由于  ,所以

        ,所以

        ②因?yàn)? ,

        ,所以,即

        ,所以

        故當(dāng)時(shí),有………………… 14分

         


        同步練習(xí)冊(cè)答案