某地機動車駕照考試規(guī)定:每位考試者在一年內(nèi)最多有次參加考試的機會.一旦某次考試通過.便可領(lǐng)取駕照.不再參加以后的考試.否則就一直考到第三次為止.如果小王決定參加駕照考試.設(shè)他一年中三次參加考試通過的概率依次為.(Ⅰ)求小王在第三次考試中通過而領(lǐng)到駕照的概率, (Ⅱ)求小王在一年內(nèi)領(lǐng)到駕照的概率. 查看更多

 

題目列表(包括答案和解析)

某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第次為止.如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為.求在一年內(nèi)李明參加駕照考試次數(shù)的分布列和的期望,并求李明在一年內(nèi)領(lǐng)到駕照的概率.

查看答案和解析>>

解答題:解答應(yīng)寫出必要的文字說明、證明過程或演算步驟

某地區(qū)出臺了一項機動車駕照考試規(guī)定:每位參加考試人員在一年內(nèi)最多有三次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則一直考到第三次為止.王先生決定參加駕照考試,如果他參加第一、二、三次考試能通過的概率依次為0.6、0.7、0.8,求王先生在一年內(nèi)能領(lǐng)取駕照的概率

查看答案和解析>>

解答題:解答應(yīng)寫出必要的文字說明、證明過程或演算步驟

某地區(qū)出臺了一項機動車駕照考試規(guī)定:每位參加考試人員在一年內(nèi)最多有三次參加考試的機會,一旦某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則一直考到第三次為止.王先生決定參加駕照考試,如果他參加第一、二、三次考試能通過的概率依次為0.6、0.7、0.8,求王先生在一年內(nèi)能領(lǐng)取駕照的概率.

查看答案和解析>>

17、某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有4次參加考試的機會,一量某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第4次為止如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9.求在一年內(nèi)李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一所內(nèi)領(lǐng)到駕照的概率.

查看答案和解析>>

某地最近出臺一項機動車駕照考試規(guī)定:每位考試者一年之內(nèi)最多有4次參加考試的機會,一量某次考試通過,便可領(lǐng)取駕照,不再參加以后的考試,否則就一直考到第4次為止如果李明決定參加駕照考試,設(shè)他每次參加考試通過的概率依次為0.6,0.7,0.8,0.9.求在一年內(nèi)李明參加駕照考試次數(shù)ξ的分布列和ξ的期望,并求李明在一所內(nèi)領(lǐng)到駕照的概率.

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

BBDACA     CDBDBA

 

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵,

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵,

,解得

又∵, ∴,

,

設(shè)的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在第三次考試中通過而領(lǐng)到駕照的概率為:

            ………………………6分

          (Ⅱ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

………………12分

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,∴平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設(shè)的中點為,連接,則,

是異面直線所成的角或其補角

由(Ⅰ)知,在中,,

.

所以異面直線所成的角為.…………………8分(文12分)

20.(本小題滿分12分)

解:(Ⅰ)∵        

據(jù)題意,,

  ………………………4分

         (Ⅱ)由(Ⅰ)知,

             ∴

∴對于最小值為 ………………… 8分

的對稱軸為,且拋物線開口向下,

時,最小值為中較小的,

,

∴當時,的最小值是-7.

的最小值為-11. ………………………12分

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:由(Ⅰ)知:

          記

          用錯位相減法求和得:

          令,

          ∵

          ∴數(shù)列是遞減數(shù)列,∴,

          ∴.

          即.………………………12分

       (由證明也給滿分)

22.(本小題滿分14分)

解:(Ⅰ)①當直線軸時,

,此時,∴.

(不討論扣1分)

②當直線不垂直于軸時,,設(shè)雙曲線的右準線為

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準線的距離為.

,得:,

,∴,∵此時,∴

綜上可知.………………………………………7分

(Ⅱ)設(shè),代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習冊答案