解:過圓心C(1.1)作直線的垂線.垂足為P,這時 查看更多

 

題目列表(包括答案和解析)

已知曲線上動點到定點與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

(3)以曲線的左頂點為圓心作圓,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.

【解析】第一問利用(1)過點作直線的垂線,垂足為D.

代入坐標得到

第二問當斜率k不存在時,檢驗得不符合要求;

當直線l的斜率為k時,;,化簡得

第三問點N與點M關(guān)于X軸對稱,設,, 不妨設

由于點M在橢圓C上,所以

由已知,則

,

由于,故當時,取得最小值為

計算得,,故,又點在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,數(shù)學公式=數(shù)學公式是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:數(shù)學公式為定值;
(3)對于雙曲線Γ:數(shù)學公式,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線數(shù)學公式及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓數(shù)學公式及它的頂點.

查看答案和解析>>

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,=是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:為定值;
(3)對于雙曲線Γ:,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結(jié)論(不要求書寫求解或證明過程).
情形一:雙曲線及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓及它的頂點.

查看答案和解析>>

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(A)(坐標系與參數(shù)方程) 在極坐標系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標方程為   
(B)(不等式選講)已知關(guān)于x的不等式|x+a|+|x-1|+a<2011(a是常數(shù))的解是非空集合,則a的取值范圍   
(C)(幾何證明選講)如圖:若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=   

查看答案和解析>>

選做題(請考生在三個小題中任選一題作答,如果多做,則按所做的第一題評閱記分).
(A)(坐標系與參數(shù)方程) 在極坐標系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標方程為________.
(B)(不等式選講)已知關(guān)于x的不等式|x+a|+|x-1|+a<2011(a是常數(shù))的解是非空集合,則a的取值范圍________.
(C)(幾何證明選講)如圖:若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC=________.

查看答案和解析>>


同步練習冊答案