題目列表(包括答案和解析)
設(shè)函數(shù)f(x)=cos(2x+)+sinx.(1)求函數(shù)f(x)的最大值和最小正周期. w.w.(2)設(shè)A,B,C為ABC的三個內(nèi)角,若cosB=,,且C為銳角,求sinA.
(本小題滿分12分)
有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個長方體無蓋容器(切、焊損耗忽略不計).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計:在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高是小正方形的邊長.
(1)請你求出這種切割、焊接而成的長方體容器的最大容積V1;
(2)請你判斷上述方案是否是最佳方案,若不是,請設(shè)計一種新方案,使材料浪費最少,且所得長方體容器的容積V2>V1.
(本題滿分15分)
設(shè)分別是橢圓的左、右焦點.
⑴若是該橢圓上的一點,且,求的面積;
⑵若是該橢圓上的一個動點,求的最大值和最小值;
⑶設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.
(本小題滿分12分)
有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個長方體無蓋容器(切、焊損耗忽略不計).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計:在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高是小正方形的邊長.
(1)請你求出這種切割、焊接而成的長方體容器的最大容積V1;
(2)請你判斷上述方案是否是最佳方案,若不是,請設(shè)計一種新方案,使材料浪費最少,且所得長方體容器的容積V2>V1.
一、選擇題(每小題5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空題(每小題4分,共16分)
13. 14.3825 15.1 16.0ⅠⅡ
三、解答題
17.解:(Ⅰ)在中,由及余弦定理得
而,則;
(Ⅱ)由及正弦定理得,
而,則
于是,
由得,當(dāng)即時,。
18解:(Ⅰ)基本事件共有36個,方程有正根等價于,即。設(shè)“方程有兩個正根”為事件,則事件包含的基本事件為共4個,故所求的概率為;
(Ⅱ)試驗的全部結(jié)果構(gòu)成區(qū)域,其面積為
設(shè)“方程無實根”為事件,則構(gòu)成事件的區(qū)域為
,其面積為
故所求的概率為
19.解:(Ⅰ)證明:由平面及得平面,則
而平面,則,又,則平面,
又平面,故。
(Ⅱ)在中,過點作于點,則平面.
由已知及(Ⅰ)得.
故
(Ⅲ)在中過點作交于點,在中過點作交于點,連接,則由得
由平面平面,則平面
再由得平面,又平面,則平面.
故當(dāng)點為線段上靠近點的一個三等分點時,平面.
20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,
則,
(Ⅱ)由
得,故數(shù)列適合條件①
而,則當(dāng)或時,有最大值20
即,故數(shù)列適合條件②.
綜上,故數(shù)列是“特界”數(shù)列。
21.證明:消去得
設(shè)點,則,
由,,即
化簡得,則
即,故
(Ⅱ)解:由
化簡得
由得,即
故橢圓的長軸長的取值范圍是。
22.解:(Ⅰ),由在區(qū)間上是增函數(shù)
則當(dāng)時,恒有,
即在區(qū)間上恒成立。
由且,解得.
(Ⅱ)依題意得
則,解得
而
故在區(qū)間上的最大值是。
(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個不同的交點,
即方程恰有3個不等的實數(shù)根。
而是方程的一個實數(shù)根,則
方程有兩個非零實數(shù)根,
則即且.
故滿足條件的存在,其取值范圍是.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com