20. 查看更多

 

題目列表(包括答案和解析)

( 本題滿分12分 )
已知函數f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

(本題滿分12分)     已知函數.

(Ⅰ) 求f 1(x);

(Ⅱ) 若數列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;

(Ⅲ)  設bn=(32n-8),求數列{bn}的前項和Tn

查看答案和解析>>

(本題滿分12分)已知函數f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標原點到切線的距離為,若x=時,y=f(x)有極值.

(1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

(本題滿分12分) 已知數列{an}滿足

   (Ⅰ)求數列的前三項:a1,a2,a3

   (Ⅱ)求證:數列{}為等差數列. w.w.w.k.s.5.u.c.o.m    

(Ⅲ)求數列{an}的前n項和Sn.

查看答案和解析>>

(本題滿分12分)   已知函數

   (Ⅰ)當的 單調區(qū)間;

   (Ⅱ)當的取值范圍。

查看答案和解析>>

一、選擇題

1―5  BCAAB;6-10  BCACD ;11-12  DA

二、填空題

13、2   14、9   15、   16、②

三、解答題

17.解:

(Ⅰ)由,得,

,得.??????????????????????????????????????????????????????????????????????????????????????? 2分

所以.??????????????????????????????????????????? 5分

(Ⅱ)由正弦定理得.?????????????????????????????????????????????????? 8分

所以的面積.????????????????????????? 10分

18.解:

(1)       ,  

又橢圓的中心在原點,焦點在軸上,

橢圓的方程為:

(2)由

19.解:

(1)連結、,則

(2)證明:連結,則,PQ∥平面AA1B1B.

20.解:

設數列的公差為,則

,

,

.????????????????????????????????????????????????????????????????????????????????????????????? 3分

成等比數列得

,

整理得,

解得.???????????????????????????????????????????????????????????????????????????????????????????????????? 7分

時,.????????????????????????????????????????????????????????????????????????????????? 9分

時,,

于是.????????????????????????????????????????????????????? 12分

21.解:

(1)函數的圖像經過點

  

(2)函數為

   

時,,函數

函數為的定義域為:;值域為:

(3)函數的反函數為

    不等式

      不等式的解集為

22.證明:

(1)PA⊥底面ABCD  

∠BAD=90° 

平面

是斜線在平面內的射影

 AE⊥PD       BE⊥PD

(2)連結

PA⊥底面ABCD   是斜線在平面內的射影

     

(3)過點作,連結,則(或其補角)為異面直線AE與CD所成的角。由(2)知      平面

    平面      

  

  異面直線AE與CD所成的角為

 


同步練習冊答案