題目列表(包括答案和解析)
(19)(本小題滿分12分)
為防止風(fēng)沙危害,某地決定建設(shè)防護(hù)綠化帶,種植楊樹、沙柳等植物。某人一次種植了n株沙柳,各株沙柳成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活沙柳的株數(shù),數(shù)學(xué)期望,標(biāo)準(zhǔn)差為。
(Ⅰ)求n,p的值并寫出的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補(bǔ)種,求需要補(bǔ)種沙柳的概率
19(本小題滿分12分)
P是以為焦點(diǎn)的雙曲線C:(a>0,b>0)上的一點(diǎn),已知=0,.
(1)試求雙曲線的離心率;
(2)過點(diǎn)P作直線分別與雙曲線兩漸近線相交于P1、P2兩點(diǎn),當(dāng),= 0,求雙曲線的方程.
(19) (本小題滿分12分)某廠家根據(jù)以往的經(jīng)驗(yàn)得到有關(guān)生產(chǎn)銷售規(guī)律如下:每生產(chǎn)(百臺(tái)),其總成本為(萬元),其中固定成本2萬元,每生產(chǎn)1百臺(tái)需生產(chǎn)成本1萬元(總成本固定成本生產(chǎn)成本);銷售收入(萬元)滿足:(Ⅰ)要使工廠有盈利,求的取值范圍;
(Ⅱ)求生產(chǎn)多少臺(tái)時(shí),盈利最多?
(本小題滿分12分)
某初級中學(xué)有三個(gè)年級,各年級男、女生人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 370 | z | 200 |
男生 | 380 | 370 | 300 |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.
(1)求z的值;
(2)用分層抽樣的方法在初三年級中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任選2名學(xué)生,求至少有1名女生的概率;
(3)用隨機(jī)抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結(jié)果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.1的概率.
(本小題滿分12分)
某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 373 | x | Y |
男生 | 377 | 370 | z |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19。 (I)求x的值; (II)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在初三年級抽取多少名? (III)已知,求初三年級中女生比男生多的概率。
一、1 B 2 D
二、13、3 14、-160 15、 16、
三、17、解: (1) …… 3分
的最小正周期為 ………………… 5分
(2) , ………………… 7分
………………… 10分
………………… 11分
當(dāng)時(shí),函數(shù)的最大值為1,最小值 ………… 12分
18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對立事件概率公式
得:
即這箱產(chǎn)品被用戶拒絕接收的概率為 ………… 6分
(II)
………… 10分
1
2
3
P
…………11分
∴ E= …………12分
19、解法一:
(Ⅰ)連結(jié)B
∵在△AC中,O、D均為中點(diǎn),
∴A∥DO …………………………2分
∵A平面BD,DO平面BD,
∴A∥平面BD!4分
(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。
∵∠DC = 60°,∴C= 。
作DE⊥BC于E。
∵平面BC⊥平面ABC,
∴DE⊥平面BC
作EF⊥B于F,連結(jié)DF,則 DF⊥B
∴∠DFE是二面角D-B-C的平面角……………………………………8分
在Rt△DEC中,DE=
在Rt△BFE中,EF = BE?sin
∴在Rt△DEF中,tan∠DFE =
∴二面角D-B-C的大小為arctan………………12分
解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,
設(shè)| AD | = 1∵∠DC =60°∴| C| = 。
則A(1,0,0),B(0,,0),C(-1,0,0),
(1,0), ,
(Ⅰ)連結(jié)C交B于O是C的中點(diǎn),連結(jié)DO,則 O. =
∵A平面BD,
∴A∥平面BD.……………………………………………………………4分
(Ⅱ)=(-1,0,),
設(shè)平面BD的法向量為n = ( x , y , z ),則
即 則有= 0令z = 1
則n = (,0,1)…………………………………………………………8分
設(shè)平面BC的法向量為m = ( x′ ,y′,z′)
|