(Ⅱ)求二面角D-B-C的大小. 查看更多

 

題目列表(包括答案和解析)

(18)

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn)。

(1)求證:AB1⊥面A1BD;

(2)求二面角A-A1D-B的大。

(3)求點(diǎn)C到平面A1BD的距離。

查看答案和解析>>

(本題滿分12分)

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn)。(Ⅰ)求證:AB1⊥面A1BD;

(Ⅱ)求二面角A-A1D-B的大小;

(Ⅲ)求點(diǎn)C到平面A1BD的距離;

查看答案和解析>>

(本小題滿分12分)

將兩塊三角板按圖甲方式拼好(A、B、C、D四點(diǎn)共面),其中,,AC = 2,現(xiàn)將三角板ACD沿AC折起,使點(diǎn)D在平面ABC上的射影O恰好落在邊AB上(如圖乙).
(1)求證:AD⊥平面BDC;
(2)求二面角D-AC-B的大;

(3)求異面直線AC與BD所成角的大小。

查看答案和解析>>

(08年西工大附中理)如圖,已知正三棱柱ABCDAC的中點(diǎn),∠DC = 60°

    (Ⅰ)求證:A∥平面BD;

(Ⅱ)求二面角DBC的大小。



 

查看答案和解析>>

如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),

且CD⊥平面PAB。

(1)求證:AB⊥平面PCB

(2)求二面角C-PA-B的大小。

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 當(dāng)時(shí),函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設(shè)這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對(duì)立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結(jié)B1CBCO,則OBC的中點(diǎn),連結(jié)DO。

∵在△AC中,O、D均為中點(diǎn),

ADO   …………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則                  O.       =

A平面BD

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

      <dl id="ddoxh"></dl>
          1. <dl id="ddoxh"></dl>
            <li id="ddoxh"></li>

                  令y = -1,解得m = (,-1,0)

                  二面角DBC的余弦值為cos<n , m>=

            ∴二面角DBC的大小為arc cos          …………12分

            20、解: 對(duì)函數(shù)求導(dǎo)得: ……………2分

            (Ⅰ)當(dāng)時(shí),                   

            解得

              解得

            所以, 單調(diào)增區(qū)間為,,

            單調(diào)減區(qū)間為(-1,1)                                    ……………5分

            (Ⅱ) 令,即,解得     ………… 6分

            時(shí),列表得:

             

            x

            1

            +

            0

            0

            +

            極大值

            極小值

            ……………8分

            對(duì)于時(shí),因?yàn)?sub>,所以,

            >0                                                    …………   10 分

            對(duì)于時(shí),由表可知函數(shù)在時(shí)取得最小值

            所以,當(dāng)時(shí),                              

            由題意,不等式對(duì)恒成立,

            所以得,解得                          ……………12分

            21、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線為其相應(yīng)準(zhǔn)線,

            離心率為的橢圓

            設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

            ,,∴點(diǎn)在x軸上,且,則3,

            解之得:,     

            ∴坐標(biāo)原點(diǎn)為橢圓的對(duì)稱中心 

            ∴動(dòng)點(diǎn)M的軌跡方程為:                 …………    4分

            (II)設(shè),設(shè)直線的方程為(-2〈n〈2),代入

                                 ………… 5分

            , 

                 …………  6分

            ,K(2,0),,

            ,

             

            解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

            (Ⅲ)設(shè),由知, 

            直線的斜率為                …………    10分

            當(dāng)時(shí),;

            當(dāng)時(shí),,

            時(shí)取“=”)或時(shí)取“=”),

                                            

            綜上所述                         …………  12分  

            22、(I)解:方程的兩個(gè)根為,

            當(dāng)時(shí),,所以;

            當(dāng)時(shí),,所以

            當(dāng)時(shí),,,所以時(shí);

            當(dāng)時(shí),,,所以.    …………  4分

            (II)解:

            .                        …………  8分

            (III)證明:,

            所以

            .                       …………  9分

            當(dāng)時(shí),

            ,

                                                     …………  11分

            同時(shí),

            .                                    …………  13分

            綜上,當(dāng)時(shí),.                     …………  14分

             


            同步練習(xí)冊(cè)答案