16.(1)因?yàn)镻A⊥底面ABCD.所以PA⊥CD.-------------------2分又AC⊥CD.且AC∩PA=A. 所以CD⊥平面PAC.--------------------------4分又CDÌ平面PCD.所以平面PAC⊥平面PCD.---------------6分 查看更多

 

題目列表(包括答案和解析)

如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點(diǎn)F在線段AP上,且滿足
PF
PA

(1)證明:PA⊥BD;
(2)當(dāng)λ取何值時(shí),直線DF與平面ABCD所成角為30°?

查看答案和解析>>

如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB

(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小                .

 

【解析】本試題主要考查了立體幾何中的運(yùn)用。

(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB   所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.

(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知

AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.

故△ADE為等腰三角形.

取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =

連接FG,則FG∥EC,F(xiàn)G⊥DE.

所以,∠AFG是二面角A-DE-C的平面角.

連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =

cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,

所以,二面角A-DE-C的大小為120°

 

查看答案和解析>>

已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為1的正方形,PD⊥底面ABCD,PD=AD.

(Ⅰ)求證:BC∥平面PAD;

(Ⅱ)若E、F分別為PB,AD的中點(diǎn),求證:EF⊥BC;

(Ⅲ)求二面角C-PA-D的余弦值.

 

查看答案和解析>>

如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點(diǎn)F在線段AP上,且滿足
(1)證明:PA⊥BD;
(2)當(dāng)λ取何值時(shí),直線DF與平面ABCD所成角為30°?

查看答案和解析>>

如圖所示,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點(diǎn)F在線段AP上,且滿足數(shù)學(xué)公式
(1)證明:PA⊥BD;
(2)當(dāng)λ取何值時(shí),直線DF與平面ABCD所成角為30°?

查看答案和解析>>


同步練習(xí)冊(cè)答案