題目列表(包括答案和解析)
(本小題滿分12分)
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,橢圓短半軸長為1,動(dòng)點(diǎn) 在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值。
((本題滿分14分)
已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動(dòng)點(diǎn) 在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值。
已知焦點(diǎn)在x軸的橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動(dòng)點(diǎn) 在直線(為長半軸,為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,橢圓短半軸長為1,動(dòng)點(diǎn) 在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值。
((本小題滿分12分)
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,橢圓短半軸長為1,動(dòng)點(diǎn) 在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以OM為直徑且被直線截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以OM為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值。
一、填空題(5分×12=60分)
1. 2.(-1,0) 3.()或() 4.
5.4 6. 7.6 8. 9. 10.11. 120 12.()或()
二、解答題
13.解:由已知
(I)由已知
(II)|
=13-12sin(A+B)=13-12sin(2 B +).
∵△ABC為銳角三角形,A-B=,∴C=π-A-B<,A=+B<.
14.解:(I)因?yàn)?sub>邊所在直線的方程為,且與垂直,
所以直線的斜率為.又因?yàn)辄c(diǎn)在直線上,
所以邊所在直線的方程為..
(II)由解得點(diǎn)的坐標(biāo)為,
因?yàn)榫匦?sub>兩條對(duì)角線的交點(diǎn)為.
所以為矩形外接圓的圓心.
又.
從而矩形外接圓的方程為.
(III)因?yàn)閯?dòng)圓過點(diǎn),所以是該圓的半徑,又因?yàn)閯?dòng)圓與圓外切,
所以,即.
故點(diǎn)的軌跡是以為焦點(diǎn),實(shí)軸長為的雙曲線的左支.
因?yàn)閷?shí)半軸長,半焦距.
所以虛半軸長.
從而動(dòng)圓的圓心的軌跡方程為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com