C. 查看更多

 

題目列表(包括答案和解析)


C.選修4—4:坐標(biāo)系與參數(shù)方程
(本小題滿分10分)
在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關(guān)系.

查看答案和解析>>

C選修4-4:坐標(biāo)系與參數(shù)方程(本小題滿分10分)
在平面直角坐標(biāo)系中,求過橢圓為參數(shù))的右焦點(diǎn)且與直線為參數(shù))平行的直線的普通方程。

查看答案和解析>>

C.(選修4—4:坐標(biāo)系與參數(shù)方程)

在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正

半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),求直線

得的弦的長度.

 

查看答案和解析>>

C(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標(biāo)方程為.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為                

 

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點(diǎn),軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線的極坐標(biāo)方程.

 

 

 

查看答案和解析>>

一選擇題:DAADB  CBDDC 

二.填空題:11. 1  ;  12.5     13.     14. 1;   15.5

16.解:(1)…………4分

將y=cos2x的圖象先向左平移個(gè)單位長度,再將所得圖像上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)伸長為原來的倍,最后將所得圖像向上平移2個(gè)單位即可.………………………………………………7分

(2)    …………9分

       即  ……………………11分

∴函數(shù)f(x)的最小值為3,最大值為…………………………………………………12分

 

 

17.解:(1)

;……………………5分

,得,

的單調(diào)減區(qū)間是;階段   ………………8分

(2)當(dāng)時(shí),,

∴在時(shí),取最大值,由,得!12分

 

 

18.解析:(1)= ……2’

    =…………  6’

    (2)由余弦定理,得

    即……………………………………  8’

 ……………………10’

  可求得…………………………………  12’

19.解:(I) 公差為,公比為。

由條件:,得……………………4分

                ………………………………………………6分

(II)由(1)可知

……………………(1)

………………………(2)

由(2)-(1)得

…………………………9分

…………………………………………………………12分

 

 

20.解:(Ⅰ)該出版社一年的利潤(萬元)與每本書定價(jià)的函數(shù)關(guān)系式為:

       .……………………4分(定義域不寫扣2分)

(Ⅱ)

                  .…………………………6分

       令或x=20(不合題意,舍去).…………7分

      

       在兩側(cè)的值由正變負(fù).

       所以(1)當(dāng)時(shí),

       .……9分

(2)當(dāng)時(shí),

,…………………………11分

所以

答:若,則當(dāng)每本書定價(jià)為元時(shí),出版社一年的利潤最大,最大值(萬元);若,則當(dāng)每本書定價(jià)為11元時(shí),出版社一年的利潤最大,最大值(萬元).…………………………13分

 

 

21.解:(1)函數(shù)定義域?yàn)?sub>………………………………2分

∴增區(qū)間:(0,+∞),減區(qū)間:(-1,0)………………………………5分

(2)由

……………………8分

時(shí),恒成立!10分

(3)

 ……………………11分

    由

,

上恰有兩相異實(shí)根

……………………………………14分

 


同步練習(xí)冊答案