題目列表(包括答案和解析)
在棱長(zhǎng)為a的正方體ABCD—A′B′C′D′中,E、F分別是BC、A′D′的中點(diǎn).
求證:四邊形B′EDF是菱形;
在棱長(zhǎng)為a的正方體ABCD—A′B′C′D′中,E、F分別是BC、A′D′的中點(diǎn)
(1)求直線(xiàn)A′C與DE所成的角;
(2)求直線(xiàn)AD與平面B′EDF所成的角;
(3)求面B′EDF與面ABCD所成的角
(1)求點(diǎn)A到直線(xiàn)B′C的距離;
(2)求點(diǎn)A到平面BD′的距離;
(3)求點(diǎn)A′到平面AB′D′的距離;
(4)求平面AB′D′與平面BC′D的距離;
(5)求直線(xiàn)AB到平面CDA′B′的距離.
1. 2. 1 3. 4 4. 5. 1, 6. 90° 7. 13
8. 9. 10. 4 11. y=2x 12. 9
13. D 14. B 15. D 16. C
17. 解: (1)y=2sin(2x-),
(2) ……
∴函數(shù)y的值域?yàn)閇-1,2]
……………
18. (1)解 如圖所示,在平面ABCD內(nèi),過(guò)C作CP∥DE,交直線(xiàn)AD于P,則∠A′CP(或補(bǔ)角)為異面直線(xiàn)A′C與DE所成的角
在△A′CP中,
易得A′C=a,CP=DE=a,A′P=a
由余弦定理得cosA′CP=
(2)解 ∵∠ADE=∠ADF,∴AD在平面B′EDF內(nèi)的射影在∠EDF的平分線(xiàn)上 如下圖所示
又∵B′EDF為菱形,∴DB′為∠EDF的平分線(xiàn),
故直線(xiàn)AD與平面B′EDF所成的角為∠ADB′
在Rt△B′AD中,AD=a,AB′=a,B′D=a
則cosADB′=
∵∠ADE=∠ADF,∴AD在平面B′EDF內(nèi)的射影在∠EDF的平分線(xiàn)上 如下圖所示
又∵B′EDF為菱形,∴DB′為∠EDF的平分線(xiàn),
故直線(xiàn)AD與平面B′EDF所成的角為∠ADB′,
如圖建立坐標(biāo)系,則
,
19. (1)解為等差數(shù)列,
……………………………………………………2分
解得 ……………………………4分
………………………………………………………………5分
……………………………………………………………6分
(2) ………………………………………………6分
…………8分
因,知上單減,在上單增,
又,
而 …………………………………………10分
∴當(dāng)n = 5時(shí),取最大值為 ………………12分
20. 解:(1)∵,∴,即,
∵,∴
(2),
當(dāng),
即時(shí),
當(dāng)時(shí),∵,∴這樣的不存在。
當(dāng),即時(shí),,這樣的不存在。
綜上得, .
21. 解:(1)Q為PN的中點(diǎn)且GQ⊥PN
GQ為PN的中垂線(xiàn)|PG|=|GN|
∴|GN|+|GM|=|MP|=6,故G點(diǎn)的軌跡是以M、N為焦點(diǎn)的橢圓,其長(zhǎng)半軸長(zhǎng),半焦距,∴短半軸長(zhǎng)b=2,∴點(diǎn)G的軌跡方程是
(2)因?yàn)?sub>,所以四邊形OASB為平行四邊形
若存在l使得||=||,則四邊形OASB為矩形
若l的斜率不存在,直線(xiàn)l的方程為x=2,由
矛盾,故l的斜率存在.
設(shè)l的方程為
①
②
把①、②代入
∴存在直線(xiàn)使得四邊形OASB的對(duì)角線(xiàn)相等.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com