作直線.與曲線C交于A.B兩點.O是坐標(biāo)原點.設(shè) 是否存在這樣的直線.使四邊形OASB的對角線相等?若存在.求出直線的方程,若不存在.試說明理由. 查看更多

 

題目列表(包括答案和解析)

曲線C上任意一點到E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A、B兩點,點P在C上,且位于x軸上方,
PA
PF
=0

(1)求曲線C的方程;
(2)求點P的坐標(biāo);
(3)求曲線C的中心為圓心,AB為直徑作圓O,過點P的直線l截圓O的弦MN長為3
15
,求直線l的方程.

查看答案和解析>>

曲線C上任一點到定點(0,
1
8
)的距離等于它到定直線y=-
1
8
的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線l1、l2分別交曲線C于A、B兩點,且l1⊥l2,設(shè)M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標(biāo)和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點,點P在曲線C上且位于x軸上方,滿足
PA
PF
=0

(1)求曲線C的方程;
(2)求點P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過點P的直線l使其被圓O所截的弦MN長為3
15
,若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

(12分)曲線C是中心在原點,焦點在軸上的雙曲線,已知它的一個焦點F的坐標(biāo)為(2,0),一條漸進(jìn)線的方程為,過焦點F作直線交曲線C的右支于P.Q兩點,R是弦PQ的中點。

  (Ⅰ)求曲線C的方程;

  (Ⅱ)當(dāng)點P在曲線C右支上運動時,求點R到軸距離的最小值;

  (Ⅲ)若在軸在左側(cè)能作出直線,使以線段pQ為直徑的圓與直線L相切,求m的取值范圍。

查看答案和解析>>

曲線C上任一點到點E(-4,0),F(xiàn)(4,0)的距離的和為12,C與x軸的負(fù)半軸、正半軸依次交于A,B兩點,點P在曲線C上且位于x軸上方,滿足數(shù)學(xué)公式
(1)求曲線C的方程;
(2)求點P的坐標(biāo);
(3)以曲線C的中心O為圓心,AB為直徑作圓O,是否存在過點P的直線l使其被圓O所截的弦MN長為數(shù)學(xué)公式,若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

1.   2. 1  3. 4  4.  5. 1,  6.  90° 7. 13

8.   9.   10. 4  11. y=2x  12. 9

13. D  14. B  15. D  16. C

17. 解: (1)y=2sin(2x-),  3’     最小正周期T=    5’

(2) ……8’

∴函數(shù)y的值域為[-1,2]                           ……………10’

18. (1)解  如圖所示,在平面ABCD內(nèi),過CCPDE,交直線ADP,則∠ACP(或補角)為異面直線ACDE所成的角  

在△ACP中,

易得AC=aCP=DE=a,AP=a

由余弦定理得cosACP=

ACDE所成角為arccos 

另法(向量法)  如圖建立坐標(biāo)系,則

ACDE所成角為arccos 

 (2)解  ∵∠ADE=∠ADF,∴AD在平面BEDF內(nèi)的射影在∠EDF的平分線上  如下圖所示   

又∵BEDF為菱形,∴DB′為∠EDF的平分線,

故直線AD與平面BEDF所成的角為∠ADB

在Rt△BAD中,AD=a,AB′=a,BD=a

則cosADB′=

AD與平面BEDF所成的角是arccos 

另法(向量法) 

∵∠ADE=∠ADF,∴AD在平面BEDF內(nèi)的射影在∠EDF的平分線上  如下圖所示   

又∵BEDF為菱形,∴DB′為∠EDF的平分線,

故直線AD與平面BEDF所成的角為∠ADB′,

如圖建立坐標(biāo)系,則

,

AD與平面BEDF所成的角是arccos 

19.  (1)解為等差數(shù)列,

     ……………………………………………………2分

解得 ……………………………4分

 ………………………………………………………………5分

 ……………………………………………………………6分

   (2) ………………………………………………6分

 …………8分

,知上單減,在上單增,

,

…………………………………………10分

∴當(dāng)n = 5時,取最大值為 ………………12分

20. 解:(1)∵,∴,即,

,∴

   (2),  

  當(dāng),

時,

     當(dāng)時,∵,∴這樣的不存在。

     當(dāng),即時,,這樣的不存在。

     綜上得, .

21. 解:(1)Q為PN的中點且GQ⊥PN

       GQ為PN的中垂線|PG|=|GN|                                        

              ∴|GN|+|GM|=|MP|=6,故G點的軌跡是以M、N為焦點的橢圓,其長半軸長,半焦距,∴短半軸長b=2,∴點G的軌跡方程是

   (2)因為,所以四邊形OASB為平行四邊形

       若存在l使得||=||,則四邊形OASB為矩形

       若l的斜率不存在,直線l的方程為x=2,由

       矛盾,故l的斜率存在.   

       設(shè)l的方程為

      

          ①

      

          ②                      

       把①、②代入

∴存在直線使得四邊形OASB的對角線相等.

 


同步練習(xí)冊答案