19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)等體積的球和正方體,試比較它們表面積的大小關(guān)系.

查看答案和解析>>

(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語(yǔ)言寫出算法;
(2)畫出流程圖.

查看答案和解析>>

(本小題滿分10分)

已知函數(shù)

   (Ⅰ)求函數(shù)的最小正周期;

   (Ⅱ)當(dāng)時(shí),求函數(shù)的最大值和最小值.

查看答案和解析>>

(本小題滿分10分)已知A,B,C,分別是的三個(gè)角,向量

與向量垂直。w.w.w.k.s.5.u.c.o.m        

   (1)求的大小;

   (2)求函數(shù)的最大值。

查看答案和解析>>

(本小題滿分10分)

      已知的內(nèi)角、、所對(duì)的邊分別為、,向量

,且為銳角.

     (Ⅰ)求角的大;

     (Ⅱ)若,求的面積w.w.w.k.s.5.u.c

查看答案和解析>>

一、選擇題:(每題5分,共60分)

          20080416

          二、填空題:每題5分,共20分)

          13.   14.;  15.a=-1或a=-;   

          16.①④

          17.解:(1),

          .又.(6分)

          (2)由,

          ,.(6分)

          18.證法一:向量法

          證法二:(1)由已知有BC⊥AB,BC⊥B1B,∴BC⊥平面ABB1A1

          又A1E在平面ABB1A1內(nèi)     ∴有BC⊥A1E

          (2)取B1C的中點(diǎn)D,連接FD、BD

          ∵F、D分別是AC1、B1C之中點(diǎn),∴FD∥A1B1∥BE

          ∴四邊形EFBD為平行四邊形    ∴EF∥BD

          又BD平面BCC1B1   

          ∴EF∥面BCC1B1

          (3)過(guò)B1作B1H⊥CEFH,連BH,又B1B⊥面BAC,B1H⊥CE

          ∴BH⊥EC    ∴∠B1HB為二面角B1-EC-B平面角

          在Rt△BCE中有BE=,BC=,CE=,BH=

          又∠A1CA=      ∴BB1=AA1=AC=2   

          ∴tan∠B1HB=

          19.解(1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

          設(shè)圓的圓心坐標(biāo)為(x,y),

          為參數(shù)),消參數(shù)得圓心的軌跡方程為:x2+y2=a2,(5分)

            (2)有方程組得公共弦的方

          程:圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

          ∴弦長(zhǎng)l=(定值)        (5分)

           

          20.(1)合格結(jié)果:0,1,2,3   相應(yīng)月盈利額X=-30,5,40,75

          (2)P(X≥40)=P(X=40)+P(X=75)=

          (3)

          X

          -30

          5

          40

          75

          P

           

          EX=54(元)    ∴6個(gè)月平均:6×54=324(元)

          21.(1)由已知:   

          依題意得:≥0對(duì)x∈成立

          ∴ax-1≥0,對(duì)x∈恒成立,即a≥,對(duì)x∈恒成立,

          ∴a≥(max,即a≥1.

          (2)當(dāng)a=1時(shí),,x∈[,2],若x∈,則,

          若x∈,則,故x=1是函數(shù)f(x)在區(qū)間[,2]上唯一的極小值點(diǎn),也就是最小值點(diǎn),故f(x)min=f(1)=0.

          又f()=1-ln2,f(2)=- +ln2,f()-f(2)=-2ln2=,

          ∵e3>2.73=19.683>16,

          ∴f()-f(2)>0   

          ∴f()>f(2)  

          ∴f(x)在[,2]上最大值是f(

          ∴f(x)在[,2]最大1-ln2,最小0

          (3)當(dāng)a=1時(shí),由(1)知,f(x)=+lnx在

          當(dāng)n>1時(shí),令x=,則x>1     ∴f(x)>f(1)=0

          即ln>

          22.解:(1)設(shè)橢圓方程為(a>b>0)

               ∴橢圓方程

          (2) ∵直線∥DM且在y軸上的截距為m,∴y=x+m

          與橢圓交于A、B兩點(diǎn)

          ∴△=(2m)2-4(2m2-4)>0-2<m<2(m≠0)

          (3)設(shè)直線MA、MB斜率分別為k1,k2,則只要證:k1+k2=0

          設(shè)A(x1,y1),B(x2,y2),則k1=,k2=

          由x2+2mx+2m2-4=0得x1+x2=-2m,x1x2=2m2-4

          而k1+k2=+= (*)

          又y1=x1+m  y2=x2+m

          ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2)

          =x1x2+(m-2)(x1+x2)-4(m-1)

          =2m2-4+(m-2)(-m)-4(m-1)

            =0

          ∴k1+k2=0,證之.

           

           


          同步練習(xí)冊(cè)答案