將=2m/s代入上式解得 t=1s ------------------- 查看更多

 

題目列表(包括答案和解析)

如圖甲,用繩ACBC吊起一重物,繩與豎直方向夾角分別為30°和60°,AC繩能承受的最大的拉力為150N,而BC繩能承受的最大的拉力為100N,求物體最大重力不能超過多少?
某同學(xué)的解法如下:
以重物為研究對象,重物受力如圖乙。由于重物靜止,則有
TACsin30°=TBCsin60°         1
TACcos30°+TBCcos60°=G       2
TAC=150N,TBC=100N代入12式解得G=200N。
你認(rèn)為該同學(xué)的解法正確與否?請說明理由并給出你的解答。

查看答案和解析>>

如圖所示,有一水平傳送帶以2 m/s的速度勻速運(yùn)動(dòng),現(xiàn)將一物體輕輕放在傳送帶上,若物體與傳送帶間的動(dòng)摩擦因數(shù)為0.5,則傳送帶將該物體傳送10 m的距離所需時(shí)間為多少?(取g=10 m/s2)

圖3-5-16

【解析】:以傳送帶上輕放的物體為研究對象,如圖在豎直方向受重力和支持力,在水平方向受滑動(dòng)摩擦力,做v0=0的勻加速運(yùn)動(dòng).

據(jù)牛頓第二定律有

水平方向:fma

豎直方向:Nmg=0②

fμN(yùn)

由式①②③解得a=5 m/s2

設(shè)經(jīng)時(shí)間t1,物體速度達(dá)到傳送帶的速度,據(jù)勻加速直線運(yùn)動(dòng)的速度公式

vtv0at

解得t1=0.4 s

時(shí)間t1內(nèi)物體的位移

x1at=×5×0.42 m=0.4 m<10 m

物體位移為0.4 m時(shí),物體的速度與傳送帶的速度相同,物體0.4 s后無摩擦力,開始做勻速運(yùn)動(dòng)

x2v2t2

因?yàn)?i>x2xx1=10 m-0.4 m=9.6 m,v2=2m/s

代入式⑤得t2=4.8 s

則傳送10 m所需時(shí)間為

tt1t2=0.4 s+4.8 s=5.2 s.

 

查看答案和解析>>

解題指導(dǎo):分析貨物運(yùn)動(dòng)過程,利用牛頓運(yùn)動(dòng)定律、勻變速直線運(yùn)動(dòng)規(guī)律、功率、能量守恒定律及其相關(guān)知識列方程解答。

解:(1)要使時(shí)間最短,貨物應(yīng)一直加速,設(shè)勻加速上行的加速度為a1,則有   μmgcosθ-mgsinθ=ma1,

把sinθ=2.4/12=0.2,cosθ1代入上式得:a1=2m/s2。

由于受最大速度vm=6m/s的限制,易知經(jīng)過t1=3s后貨物勻速運(yùn)動(dòng)。

加速位移 l1=vm t1/2=9m,

此后貨物還得運(yùn)動(dòng)l2=12m-9m=3m,

假設(shè)此后電動(dòng)機(jī)不工作,由μmgcosθ+mgsinθ=ma2,

解得貨物上滑的加速度大小a2=6m/s2

貨物能夠上滑的最大距離為vm2/2 a2=3m,剛好能夠到達(dá)平臺,假設(shè)正確。

該貨物能到達(dá)BC平臺,電動(dòng)機(jī)需工作的最短時(shí)間為tmin=t1=3s。

查看答案和解析>>


精英家教網(wǎng)
(1)根據(jù)牛頓第二定律,由洛倫茲力提供向心力,
則有:qvB=
mv2
r
 
r=
mv
qB
 
(2)根據(jù)左手定則,依據(jù)幾何特性,作圖,
則有該區(qū)域的面積:S=
1
2
πr2+
1
4
π(2r)2

代入數(shù)據(jù)可解得:S=
3
2
π(
mv
Bq
)2

答:(1)帶電粒子進(jìn)入磁場做圓周運(yùn)動(dòng)的半徑得r=
mv
qB

(2)用圓規(guī)和直尺在圖中畫出帶電粒子可能經(jīng)過的區(qū)域(用斜線表示)并求出該區(qū)域的面積S=
3
2
π(
mv
Bq
)2

查看答案和解析>>

已知銅的密度為8.9×103 kg/m3,銅的相對原子量為64,質(zhì)子和中子的質(zhì)量各約為1.64×10-27 kg,則銅塊中平均每個(gè)銅原子所占的空間體積為多少?銅原子的直徑約為多少?

思路解析:本題主要考查分子大小的估算.每個(gè)銅原子所占的空間應(yīng)等于摩爾體積跟物質(zhì)的量的比值,根據(jù)摩爾質(zhì)量和密度可以求出摩爾體積.

(1)銅的相對原子量為64,即每摩爾銅質(zhì)量為64 g,其摩爾體積Vmol== m3

每個(gè)銅原子的體積V0,由以上兩式得V0=1.19×10-29 m3.

(2)把銅原子作為球形模型,設(shè)其直徑為d,則π()3=V0,代入數(shù)據(jù),解得:

d=2.83×10-10 m.

查看答案和解析>>


同步練習(xí)冊答案