由已知.可得.設. 查看更多

 

題目列表(包括答案和解析)

精英家教網已知圓O:x2+y2=1,圓C:(x-4)2+(y-4)2=1,由兩圓外一點P(a,b)引兩圓切線PA、PB,切點分別為A、B,如圖,滿足|PA|=|PB|;
(Ⅰ)將兩圓方程相減可得一直線方程l:x+y-4=0,該直線叫做這兩圓的“根軸”,試證點P落在根軸上;
(Ⅱ)求切線長|PA|的最小值;
(Ⅲ)給出定點M(0,2),設P、Q分別為直線l和圓O上動點,求|MP|+|PQ|的最小值及此時點P的坐標.

查看答案和解析>>

已知函數(shù)f(x)=(x2+ax+a)e-x,(a為常數(shù),e為自然對數(shù)的底).
(Ⅰ)若函數(shù)f(x)在x=0時取得極小值,試確定a的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,設由f(x)的極大值構成的函數(shù)為g(x),試判斷曲線g(x)只可能與直線2x-3y+m=0、3x-2y+n=0(m,n為確定的常數(shù))中的哪一條相切,并說明理由.

查看答案和解析>>

已知函數(shù)f(x)=sinx,x∈R
(1)函數(shù)g(x)=2sinx•(sinx+cosx)-1的圖象可由f(x)的圖象經過怎
樣的平移和伸縮變換得到;
(2)設h(x)=f(
π
2
-2x)+4λf(x-
π
2
)
,是否存在實數(shù)λ,使得函數(shù)h(x)
在R上的最小值是-
3
2
?若存在,求出對應的λ值;若不存在,說明理由.

查看答案和解析>>

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,3cosωx),ω>0,設f(x)=
a
b
,且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)的單調遞增區(qū)間;
(3)函數(shù)f(x)的圖象可由函數(shù)y=sin2x經過怎樣的變換得到.

查看答案和解析>>

已知函數(shù),數(shù)列的項滿足: ,(1)試求

(2) 猜想數(shù)列的通項,并利用數(shù)學歸納法證明.

【解析】第一問中,利用遞推關系,

,   

第二問中,由(1)猜想得:然后再用數(shù)學歸納法分為兩步驟證明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(數(shù)學歸納法證明)i) ,  ,命題成立

ii) 假設時,成立

時,

                              

綜合i),ii) : 成立

 

查看答案和解析>>


同步練習冊答案