題目列表(包括答案和解析)
古希臘數(shù)學(xué)家丟番圖(公元250年前后)在《算術(shù)》中就提到了一元二次方程的問題,不過當(dāng)時古希臘人還沒有尋求到它的求根公式,只能用圖解等方法來求解。在歐幾里得的《幾何原本》中,形如(a>0,b>0)的方程的圖解法是:如圖,以和b為兩直角邊做Rt△ABC,再在斜邊上截取,則AD的長就是所求方程的解。
(1)請用含字母a、b的代數(shù)式表示AD的長。
(2)請利用你已學(xué)的知識說明該圖解法的正確性,并說說這種解法的遺憾之處。
設(shè)向量.
(Ⅰ)求;
(Ⅱ)若函數(shù),求的最小值、最大值.
【解析】第一問中,利用向量的坐標(biāo)表示,表示出數(shù)量積公式可得
第二問中,因為,即換元法
令得到最值。
解:(I)
(II)由(I)得:
令
.
時,
x2 |
m2 |
y2 |
n2 |
4 |
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com