(2)試曲線的切線斜率為.滿足.點(diǎn)到軸的距離為.求的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫(huà)出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

一、選擇題:1、A2、A3、B4、B5、C6、D7、B8、D9、D10、A

二、填空題:11、1000   12、   13、三條側(cè)棱、兩兩互相垂直的三棱錐中,,則此三棱錐的外接球半徑為   14、(1)8 。2)

三、解答題:

15、(1)∵,  ∴,  ………(2分)

,( 4分),………(6分)

所求解集為     ………(8分)

(2)∵     

          ………(10分) 

………(12分)  

  

的周期為,

遞增區(qū)間

16、解:解析:由題意可知,這個(gè)幾何體是直三棱柱,且,

(1)連結(jié)。

由直三棱柱的性質(zhì)得平面,所以,則

四邊形為矩形.

由矩形性質(zhì)得,過(guò)的中點(diǎn)

中,由中位線性質(zhì),得,

平面平面,

所以平面。    (6分)

(2)因?yàn)?sub>平面,平面,所以

在正方形:中,

又因?yàn)?sub>,所以平面

,得平面.    (14分)

17、解:(1)由題意知,

,可得    (6分)

(2)當(dāng)時(shí),∵

,兩式相減得

  為常數(shù),

,,,…,成等比數(shù)列。

其中,∴           ………(12分)

18、解:設(shè)二次函數(shù),則,解得

代入上式:

對(duì)于,由已知,得:,解得

代入:

而4月份的實(shí)際產(chǎn)量為萬(wàn)件,相比之下,1.35比1.3更接近1.37.

∴選用函數(shù)作模型函數(shù)較好.

19、(1)    ………(2分)

(1)由題意;,解得

∴所求的解析式為 ………(6分)

(2)由(1)可得

,得 , ………(8分)

∴當(dāng)時(shí), ,當(dāng)時(shí), ,當(dāng)時(shí),

因此,當(dāng)時(shí), 有極大值,………(8分)

當(dāng)時(shí), 有極小值,………(10分)

∴函數(shù)的圖象大致如圖。

由圖可知:。………(14分)

20、解:(1)直線軸垂直時(shí)與拋物線交于一點(diǎn),不滿足題意.

設(shè)直線的方程為,代入得,

 設(shè)、

,且,即.

,的中點(diǎn).

.由軸右側(cè)得.

軌跡的方程為.

(2)∵曲線的方程為

  ∴ ,

,

,

,∴

的取值范圍為

 

 

 


同步練習(xí)冊(cè)答案