橢圓=1的焦點為F1、F2,點P為橢圓上的動點,當∠F1PF2為鈍角時,求點P的橫坐標x0的取值范圍.

 

【解析】由題意F1(-,0),F(xiàn)2(,0),設P(x0,y0),則1=(--x0,-y0),2=(-x0,-y0),∴2=-5+<0.①

=1,② 由①②得<,

∴-<x0<.則點P的橫坐標x0的取值范圍為.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第9課時練習卷(解析版) 題型:填空題

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C.若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:解答題

如圖,已知△OFQ的面積為S,且·=1.設||=c(c≥2),S=c.若以O為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當||取最小值時,求橢圓的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:填空題

F1,F(xiàn)2是橢圓+y2=1的左右焦點,點P在橢圓上運動.則的最大值是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

已知F1、F2分別是橢圓=1(a>b>0)的左、右焦點,A、B分別是此橢圓的右頂點和上頂點,P是橢圓上一點,O是坐標原點,OP∥AB,PF1⊥x軸,F(xiàn)1A=,則此橢圓的方程是________________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

在平面直角坐標系中,有橢圓=1(a>b>0)的焦距為2c,以O為圓心,a為半徑的圓.過點作圓的兩切線互相垂直,則離心率e=________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

設Ρ是橢圓上的點.若F1、F2是橢圓的兩個焦點,則|PF1|+|PF2|=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)求證:不論m取什么實數(shù),直線l與圓C恒交于兩點;

(2)求直線被圓C截得的弦長最小時直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

直線y=2x是△ABC中∠C的平分線所在的直線,且A、B的坐標分別為A(-4,2)、B(3,1),求頂點C的坐標并判斷△ABC的形狀.

 

查看答案和解析>>

同步練習冊答案