12.已知集合..映射的對(duì)應(yīng)法則為.設(shè)集合在集合中存在原象.集合在集合中不存在原象.若從集合.中各取一個(gè)元素組成沒(méi)有重復(fù)數(shù)字的兩位數(shù)的個(gè)數(shù) ( ) A.60 B.44 C.20 D.12 20080917注意事項(xiàng): 查看更多

 

題目列表(包括答案和解析)

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則f分別為:
①f:x→
1
2
x    ②f:x→x-2    ③f:x→
x
④f:x→|x-2|
其中構(gòu)成映射關(guān)系的對(duì)應(yīng)法則是
 
(將所有答案的序號(hào)均填在橫線上).

查看答案和解析>>

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則f分別為:
①f:x→
1
2
x    ②f:x→x-2    ③f:x→
x
④f:x→|x-2|
其中構(gòu)成映射關(guān)系的對(duì)應(yīng)法則是 ______(將所有答案的序號(hào)均填在橫線上).

查看答案和解析>>

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則f分別為:
①f:x→x    ②f:x→x-2    ③f:x→④f:x→|x-2|
其中構(gòu)成映射關(guān)系的對(duì)應(yīng)法則是     (將所有答案的序號(hào)均填在橫線上).

查看答案和解析>>

已知集合A={x|0≤x≤4},集合B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則f分別為:
①f:x→數(shù)學(xué)公式x 、趂:x→x-2 、踗:x→數(shù)學(xué)公式④f:x→|x-2|
其中構(gòu)成映射關(guān)系的對(duì)應(yīng)法則是 ________(將所有答案的序號(hào)均填在橫線上).

查看答案和解析>>

6、已知映射f:A→B,其中A=B=R,對(duì)應(yīng)法則為f:x→y=x2+2x+3.若實(shí)數(shù)k∈B,在集合A中不存在原象,則k的取值范圍是( 。

查看答案和解析>>

一、選擇題

  • <noscript id="yu4qk"><code id="yu4qk"></code></noscript>

    20080917

    二、填空題

    13.1    14.(-1,3)    15.5    16.②③④

    三、解答題

    17.解:(Ⅰ)

          ………………4分

      

      當(dāng)   ……2分

    (Ⅱ)  ………3分

      又

             ………………3分

    18.解:(Ⅰ)乙在第3次獨(dú)立地射時(shí)(每次射擊相互獨(dú)立)才首次命中10環(huán)的概率為

      

    (Ⅱ)甲、乙兩名運(yùn)動(dòng)員各自獨(dú)立射擊1次,兩人中恰有一人命中10環(huán)的概率為

      

    19.解:(Ⅰ)以D為坐標(biāo)原點(diǎn),DA所在的直線為x軸、DC所在的直線為y軸、DP所在的直線為z軸,建立如圖所示的空間直角坐標(biāo)系D-xyz.

      則A(1,0,0),B(1,1,0),C(0,1,0),

      P(0,0,1)

      

      

       (Ⅱ)

      

      

      、

      

      

      解法二:

      設(shè)平面BCE的法向量為

      由

                 ………………2分

      設(shè)平面FCE的法向量為

      由

      

           …………2分

    20.(Ⅰ)由題意,得

      

       (Ⅱ)①當(dāng)

      

    ②當(dāng)

      令

      

    21.解:(Ⅰ)設(shè)橢圓方程為

      由題意,得

    所求橢圓方程;  ……………5分

    (Ⅱ)設(shè)拋物線C的方程為.

      由.

      拋物線C的方程為

      

    ,設(shè)、,則有

    ,.

      

      代入直線

      

    22.解:(Ⅰ)

      

    (Ⅱ)記方程①:方程②:

      分別研究方程①和方程②的根的情況:

       (1)方程①有且僅有一個(gè)實(shí)數(shù)根方程①?zèng)]有實(shí)數(shù)根

       (2)方程②有且僅有兩個(gè)不相同的實(shí)數(shù)根,即方程有兩個(gè)不相同的非正實(shí)數(shù)根.

      

      方程②有且僅有一個(gè)不相同的實(shí)數(shù)根,即方程有且僅有一個(gè)蜚 正實(shí)數(shù)根.

      

      綜上可知:當(dāng)方程有三個(gè)不相同的實(shí)數(shù)根時(shí),

      當(dāng)方程有且僅有兩個(gè)不相同的實(shí)數(shù)根時(shí),

      符合題意的實(shí)數(shù)取值的集合為

     


    同步練習(xí)冊(cè)答案