4.與函數(shù)為同一函數(shù)的是 ( ) 查看更多

 

題目列表(包括答案和解析)

與y=|x|為同一函數(shù)的是(  )
A、y=(
x
)2
B、y=
x2
C、y=
x,(x>0)
-x,(x<0)
D、y=alogax

查看答案和解析>>

已知函數(shù)f(x)=|x|,在①y=
x2
,②y=(
x
)2
,③y=
x2
x
,中與f(x)為同一函數(shù)的函數(shù)的個(gè)數(shù)為
1
1

查看答案和解析>>

若直角坐標(biāo)平面內(nèi)的兩個(gè)不同的點(diǎn)M、N滿足條件①M(fèi)、N都在函數(shù)y=f(x)的圖象上;②M、N關(guān)于原點(diǎn)對(duì)稱.
則稱點(diǎn)對(duì)[M,N]為函數(shù)y=f(x)的一對(duì)“友好點(diǎn)對(duì)”(注:點(diǎn)對(duì)[M,N]與[N,M]為同一“友好點(diǎn)對(duì)”).
已知函數(shù)f(x)=
log3x   x>0
-x2-4x  x≤0
,此函數(shù)的“友好點(diǎn)對(duì)”有( 。

查看答案和解析>>

下列函數(shù)中與y=
x2
為同一函數(shù)的是( 。
A、y=x
B、y=
x,(x>0)
-x,(x<0)
C、y=
x2
|x|
D、y=|x|

查看答案和解析>>

與y=|x|為同一函數(shù)的是(  )

查看答案和解析>>

一、       

二、13.;14.;15.;16.

詳細(xì)參考答案:

1.∵,∴ ,又∵ ,∴ ,選擇B

2.∵,∴ ,選擇D

3.因?yàn)殛幱安糠衷诩?sub>中又在集中,所陰影部分是,選擇A

4.∵的定義域是 ,∴,選擇C

5.∵,∴選擇A

6.由映射的定義:A、B、C不是映射,D是映射.

7.∵上是減函數(shù),∴,即

8.,或,即

9.當(dāng)時(shí),則,由當(dāng)時(shí),得,,又是奇函數(shù),,所以,即

10.∵ ,

    ∴ ,選擇A

11.在A中,由圖像看,直線應(yīng)與軸的截距;在B圖中,經(jīng)過是錯(cuò)誤的;在D中,經(jīng)過是錯(cuò)誤的,選擇C

12.根據(jù)奇函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱,作出函數(shù)圖像,則不等式

 ,或,所以選擇D

13.∵是偶函數(shù),∴,∴的增函數(shù)區(qū)間是

14.∵,,且,,∴,,則

15.∵在區(qū)間上是奇函數(shù),∴,∴在區(qū)間上的最小值為

16.函數(shù)圖像如圖,方程等價(jià)于,或

17.解:∵,

,,---------6分

,,

,--------------8分

.-------------------12分

18.解:(1)∵,∴ 的對(duì)應(yīng)法則不同,值域也不同,因此是不同的函數(shù);

   (2)∵,∴ 的定義域不同,值域也不同,因此是不同的函數(shù);

   (3)∴ 的定義域相同,對(duì)應(yīng)法則相同,值域也相同,因此是同一的函數(shù).

19.解:∵,∴ ,以下分討論:------------4分

(i)                    若時(shí),則;------------7分

(ii)                  若時(shí),則.--------11分

綜上所述:實(shí)數(shù)的取值范圍是.-------------------12分

20.解:(1)是偶函數(shù).∵ 的定義域是,設(shè)任意,都有,∴是偶函數(shù).-----------5分

 (2)函數(shù)上是增函數(shù).設(shè)任意,且時(shí),

,

,∴ ,,

, 即 ,-----------------11分

故函數(shù)上是增函數(shù).----------------------12分

21.解:(1)∵ ,,-----------2分

又  ---------①

 ∴   

  即  ---------②-----------3分

由①、② 得:,,-----------5分

(2) ,----------6分

  (i)當(dāng)時(shí),函數(shù)的最小值為;-----8分

(ii)當(dāng)時(shí),函數(shù)的最小值為;---10分

(iii)當(dāng)時(shí),函數(shù)的最小值為.------12分

22.解:(1)依題意有:,即……①,(i)當(dāng)時(shí),方程①無解,∴當(dāng)時(shí),無迭代不動(dòng)點(diǎn);(ii)當(dāng)時(shí),方程①有無數(shù)多解,∴當(dāng)時(shí),也無迭代不動(dòng)點(diǎn);(iii)當(dāng)時(shí),方程①有唯一解有迭代不動(dòng)點(diǎn).-------------6分

(2)設(shè),顯然時(shí),不滿足關(guān)系式,于是,則:

.------8分

……

即:,比較對(duì)應(yīng)的系數(shù):解之:,所以.----------14分.


同步練習(xí)冊答案