1.若.則是方程表示雙曲線的 條件 A.充分不必要 B.必要不充分 C.充要 D.既充分也不必要 查看更多

 

題目列表(包括答案和解析)

,則是方程表示雙曲線的(    )條件

A.  充分不必要  B.  必要不充分   C.  充要   D.  既不充分也不必要

 

查看答案和解析>>

,則“”是“方程表示雙曲線”

的                                                                     (    )

(A)充分不必要條件                     ( B)必要不充分條件

(C)充要條件                           ( D)既不充分也不必要條件

 

查看答案和解析>>

,則是方程表示雙曲線的( ﹡ ).

A.充分不必要條件                    B.必要不充分條件   

C.充要條件     D.既不充分也不必要條件

 

查看答案和解析>>

,則“”是方程“”表示雙曲線的(     )

A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件

查看答案和解析>>

,則“”是方程“”表示雙曲線的(     )

A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

一、選擇題(每題5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答題(17―21題每小題12分,22題14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

當(dāng)且僅當(dāng)時(shí),△ABC面積取最大值,最大值為.

18.解:(Ⅰ)依題意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E為直二面角,且, 平面ABE.

<acronym id="6wasq"></acronym>
<table id="6wasq"><cite id="6wasq"></cite></table>

        (Ⅱ)連結(jié)BD交AC于C,連結(jié)FG,

        ∵正方形ABCD邊長(zhǎng)為2,∴BG⊥AC,BG=,

        平面ACE,

        (Ⅲ)過點(diǎn)E作交AB于點(diǎn)O. OE=1.

        ∵二面角D―AB―E為直二面角,∴EO⊥平面ABCD.

        設(shè)D到平面ACE的距離為h,

        平面BCE, 

            • <code id="6wasq"><s id="6wasq"></s></code><code id="6wasq"><s id="6wasq"></s></code>

              解法二:(Ⅰ)同解法一.

              (Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直

              線為x軸,AB所在直線為y軸,過O點(diǎn)平行

              于AD的直線為z軸,建立空間直角坐標(biāo)系

              O―xyz,如圖.

              面BCE,BE面BCE,

              的中點(diǎn),

               設(shè)平面AEC的一個(gè)法向量為

              解得

                     令是平面AEC的一個(gè)法向量.

                     又平面BAC的一個(gè)法向量為,

                     ∴二面角B―AC―E的大小為

              (III)∵AD//z軸,AD=2,∴,

              ∴點(diǎn)D到平面ACE的距離

              20.解:(1)

              ;

              (2)

              ,

              ,有最大值;即每年建造12艘船,年利潤(rùn)最大(8分)

              (3),(11分)

              所以,當(dāng)時(shí),單調(diào)遞減,所以單調(diào)區(qū)間是,且

              21.解:(I)∵,且,

              ①④

              又由在處取得極小值-2可知②且

              將①②③式聯(lián)立得。   (4分)

              同理由

              的單調(diào)遞減區(qū)間是[-1,1], 單調(diào)遞增區(qū)間是(-∞,1   (6分)

              (II)由上問知:,∴。

              又∵!!!

              ,∴>0!。(8分)

              ∴當(dāng)時(shí),的解集是,

              顯然A不成立,不滿足題意。

              ,且的解集是。   (10分)

              又由A。解得。(12分)

              22.解:(1)設(shè)M(xy)是所求曲線上的任意一點(diǎn),Px1,y1)是方程x2 +y2 =4的圓上的任意一點(diǎn),則

                  則有:得,

                  軌跡C的方程為

                 (1)當(dāng)直線l的斜率不存在時(shí),與橢圓無交點(diǎn).

                  所以設(shè)直線l的方程為y = k(x+2),與橢圓交于A(x1,y1)、B(x2,y2)兩點(diǎn),N點(diǎn)所在直線方程為

                  由

                  由△=

                  即 …   

                  ,∴四邊形OANB為平行四邊形

                  假設(shè)存在矩形OANB,則,即,

                  即

                  于是有    得 … 設(shè),

              即點(diǎn)N在直線上.

               ∴存在直線l使四邊形OANB為矩形,直線l的方程為

               

               

               

               


              同步練習(xí)冊(cè)答案
              <table id="6wasq"><blockquote id="6wasq"></blockquote></table>
            • <em id="6wasq"></em>