16. 查看更多

 

題目列表(包括答案和解析)

(本題13分)已知數(shù)列{an}中,a1 = t (t≠0,且t≠1),a2 = t2.且當(dāng)x = t時,函數(shù)f (x) =(an an 1)x2 (an + 1 an) x    (n≥2)取得極值.

    (1)求證:數(shù)列{an + 1 an}是等比數(shù)列;

    (2)若bn = an ln |an| (n∈N+),求數(shù)列{bn}的前n項的和Sn;

    (3)當(dāng)t = 時,數(shù)列{bn}中是否存在最大項?如果存在,說明是第幾項,如果不存在,請說明理由.

查看答案和解析>>

(本題13分)已知函數(shù)f (x) = ln(ex + a)(a為常數(shù))是實數(shù)集R上的奇函數(shù),函數(shù)g (x) =

f (x) + sinx是區(qū)間[1,1]上的減函數(shù).

(1)求a的值;

(2)若g (x)≤t2 +t + 1在x∈[1,1]上恒成立,求t的取值范圍;

(3)討論關(guān)于x的方程的根的個數(shù).

 

查看答案和解析>>

(本題13分)設(shè)函數(shù)處取得極值,且曲線在點處的切線垂直于直線。

(1)求的值;(2)若函數(shù),討論的單調(diào)性。

查看答案和解析>>

(本題13分)設(shè)函數(shù).

 (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,請說明理由。

查看答案和解析>>

(本題13分)已知函數(shù),

(I)求的最大值和最小值;(II)若不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

一、選擇題:本小題共10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

C

A

C

B

B

A

A

二、填空題:本小題11―13題必答, 14、15小題中選答1題,若全答只計14題得分,共20分.

11.  35             12.            13. 

14.                15.    

三、解答題:共80分.

16題(本題滿分13分)

解:(1)要使f(x)有意義,必須,即

得f(x)的定義域為………………………………7分

  (2)因f(x)的定義域為,關(guān)于原點不對稱,所以

f(x)為非奇非偶函數(shù). ……………………………………………13分

17題(本題滿分13分)

解:(1)當(dāng)且僅當(dāng)時,方程組有唯一解.因的可能情況為三種情況………………………………3分

        而先后兩次投擲骰子的總事件數(shù)是36種,所以方程組有唯一解的概率

        ……………………………………………………………………6分

(2)因為方程組只有正數(shù)解,所以兩直線的交點在第一象限,由它們的圖像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程組只有正數(shù)解的概率………………………………………………………………………13分

 

18題(本題滿分14分)

(1)    證明:由題設(shè)知,F(xiàn)G=GA,F(xiàn)H=HD

             所以GH.

             又BC,故GHBC

             所以四邊形BCHG是平等四邊形。……………………4分

(2)    C、D、F、E四點共面。理由如下:

由BE,G是FA的中點知,

BEGF,所以EF//BG。……………………6分

由(1)知BG//CH,故EF//CH,故F、E、C、H共面,又點D在直線FH上,

所以C、D、F、E四點共面!8分

(3)    證明:連結(jié)EG,由AB=BE,BEAG,及,知ABEG是正方形,

             故BG⊥EA。由題設(shè)知,F(xiàn)A、AD、AB兩兩垂直,故AD⊥平面FABE,因此AD⊥BG,又EA∩AD=A,所以BG⊥平面ADE。

             由(1)知,CH//BG,所以CH⊥平面ADE,由(2)知H平面CDE,故CH平面CDE,得平面ADE⊥平面CDE!14分

 

19題(本題滿分14分)

解:(1)由已知得,解得:……………………4分

所求橢圓方程為………………………………………………6分

(2)因點即A(3,0),設(shè)直線PQ方程為………………8分

則由方程組,消去y得:

設(shè)點……………………11分

,得,

,代入上式得

,故

解得:,所求直線PQ方程為……………………14分

20題(本題滿分14分)

解:(1)函數(shù)f(x)的定義域為,…………2分

①當(dāng)時,>0,f(x)在上遞增.………………………………4分

②當(dāng)時,令解得:

,因(舍去),故在<0,f(x)遞減;在上,>0,f(x)遞增.……………8分

(2)由(1)知內(nèi)遞減,在內(nèi)遞增.

……………………………………11分

,又因

,得………………14分

21題(本題滿分12分)

解:(1)由,可得

………………………………3分

所以是首項為0,公差為1的等差數(shù)列.

所以……………………6分

(2)解:設(shè)……①

……②

當(dāng)時,①②得

…………9分

這時數(shù)列的前n項和

當(dāng)時,,這時數(shù)列的前n項和

…………………………………………12分

 

 

 

 


同步練習(xí)冊答案