題目列表(包括答案和解析)
袋子和中裝有若干個均勻的紅球和白球,從中摸一個紅球的概率是,從中摸出一個紅球的概率為.
⑴從A中有放回地摸球,每次摸出一個,有3次摸到紅球則停止.
① 求恰好摸5次停止的概率;
② 記5次之內(含5次)摸到紅球的次數(shù)為,求隨機變量的分布列及數(shù)學期望.
⑵若A、B兩個袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求的值.
袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p.
(Ⅰ) 從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.
(i)求恰好摸5次停止的概率;
(ii)記5次之內(含5次)摸到紅球的次數(shù)為,求隨機變量的分布率及數(shù)學期望E.
(Ⅱ) 若A、B兩個袋子中的球數(shù)之比為12,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值.
(Ⅰ) 從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止.(i)求恰好摸5次停止的概率;(ii)記5次之內(含5次)摸到紅球的次數(shù)為,求隨機變量的分布率及數(shù)學期望E.
(Ⅱ) 若A、B兩個袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值.
一、選擇題: BBDBA BBBCB AC
二、填空題: 13.6 14. 15.1 16. ②③
三.解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
17. 解:(1)∵ , 且與向量所成角為
∴ , ∴ ,
又,∴ ,即。
(2)由(1)可得:
∴
∵ ,
∴ ,
∴ ,
∴ 當=1時,A=
∴AB=2, 則
18.解:(1)P=
(2)隨機變量的取值為0, 1, 2, 3.
由n次獨立重復試驗概率公式得
隨機變量的分布列是
0
1
2
3
的數(shù)學期望是
19.證明(Ⅰ)
AB∥DC,DC平面PAD.
DCPD DCAD,
PDA為二面角P-CD-B的平面角.
故PDA=45° PA=AD=3,
APD=45°. PAAD.
又PAAB ,PA平面ABCD.
(Ⅱ)證法一:延長DA,CE交于點N,連結PN,
由折疊知又.
,
又由(1)知,
為二面角的平面角.………9分
在直角三角形中,
,.
即平面PEC和平面PAD所成銳二面角為30°.
證法二:如圖建立空間直角坐標系 ,
則
,
設為平面的法向量,則
,可設,又平面的法向量,
. .
20.解:(I)依題意得
(II)依題意得,上恰有兩個相異實根,
令
故在[0,1]上是減函數(shù),在上是增函數(shù),
21.解:(1)直線方程為與聯(lián)立得
(2)設弦AB的中點M的坐標為依題意有
所以弦AB的中點M的軌跡是以為中心,
焦點在軸上,長軸長為1,短軸長為的橢圓。
(3)設直線AB的方程為
代入整理得
直線AB過橢圓的左焦點F,方程有兩個不等實根。
記中點
則
的垂直平分線NG的方程為
令得
點G橫坐標的取值范圍為
22.解:(I)把
(II), ①
②
①式減②式得,, 變形得,
又因為時上式也成立。
所以,數(shù)列為公比的等比數(shù)列,
所以
(III),
所以
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com