⑶數(shù)乘分配律: 查看更多

 

題目列表(包括答案和解析)

根據(jù)向量數(shù)乘的定義,可以證明向量數(shù)乘有如下運算律:
(1)
 
;(2)
 
;(3)
 

查看答案和解析>>

比較向量數(shù)乘與實數(shù)乘法有哪些相同點和不同點:
相同點:
;
不同點:

查看答案和解析>>

出于應(yīng)用方便和數(shù)學(xué)交流的需要,我們教材定義向量的坐標(biāo)如下:取
e1
e2
為直角坐標(biāo)第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量
a
,則存在唯一的一對實數(shù)λ,μ,使得
a
=λ
e1
e2
,我們就把實數(shù)對(λ,μ)稱作向量
a
的坐標(biāo).并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.現(xiàn)在我們用
i
j
表示斜坐標(biāo)系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<
i
,
j
>=
π
3
,
(1)請你模仿直角坐標(biāo)系xOy中向量坐標(biāo)的定義方式,用向量
i
j
做基底向量定義斜坐標(biāo)系x‘Oy’平面上的任意一個向量
a
的坐標(biāo);
(2)在(1)的基礎(chǔ)上研究斜坐標(biāo)系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.

查看答案和解析>>

出于應(yīng)用方便和數(shù)學(xué)交流的需要,我們教材定義向量的坐標(biāo)如下:取數(shù)學(xué)公式數(shù)學(xué)公式為直角坐標(biāo)第xOy中與x軸和y軸正方向相同的單位向量,根據(jù)平面向量基本定理,對于該平面上的任意一個向量數(shù)學(xué)公式,則存在唯一的一對實數(shù)λ,μ,使得數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式,我們就把實數(shù)對(λ,μ)稱作向量數(shù)學(xué)公式的坐標(biāo).并依據(jù)這樣的定義研究了向量加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.現(xiàn)在我們用數(shù)學(xué)公式數(shù)學(xué)公式表示斜坐標(biāo)系x‘Oy’中與x‘軸和y軸正方向相同的單位向量,其中<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式,
(1)請你模仿直角坐標(biāo)系xOy中向量坐標(biāo)的定義方式,用向量數(shù)學(xué)公式數(shù)學(xué)公式做基底向量定義斜坐標(biāo)系x‘Oy’平面上的任意一個向量數(shù)學(xué)公式的坐標(biāo);
(2)在(1)的基礎(chǔ)上研究斜坐標(biāo)系x‘Oy’中向量的加法、減法、數(shù)乘向量及數(shù)量積的坐標(biāo)運算公式.

查看答案和解析>>

設(shè)a、b是任意向量,λ、μ是實數(shù),則實數(shù)與向量的積適合以下運算律:①結(jié)合律        ,②第一分配律        ,③第二分配律        .

      

查看答案和解析>>


同步練習(xí)冊答案