此時方程為x2+2x=3.它的根為x1=-3.x2=1.----------5分 查看更多

 

題目列表(包括答案和解析)

我們已學會了用“兩邊夾”的方法,根據(jù)不同的精確度要求,估算的取值范圍,我們還可以用“逼近”的方法,求出它的近似值.

x
1.40
1.41
1.42
1.43

x2
1.96
1.9881
2.0164
2.0449

2-1.9881=0.0119,2.0164-2=0.0164,0.0119<0.0164
可見1.9881比2.0164更逼近2,當精確度為0.01時,的近似值為1.41.
下面,我們用同樣的方法估計方程x2+2x=6其中一個解的近似值.
x
1.63
1.64
1.65
1.66

x2+2x
5.9169
5.9696
6.0225
6.0756

根據(jù)上表,方程x2+2x=6的一個解約是______________.(精確到0.01)

查看答案和解析>>

以x為自變量的二次函數(shù)y=-x2+2x+m,它的圖象與y軸交于點C(0,3),與x軸交于點A、B,精英家教網(wǎng)點A在點B的左邊,點O為坐標原點,
(1)求這個二次函數(shù)的解析式及點A,點B的坐標,畫出二次函數(shù)的圖象;
(2)在x軸上是否存在點Q,在位于x軸上方部分的拋物線上是否存在點P,使得以A,P,Q三點為頂點的三角形與△AOC相似(不包含全等)?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

先閱讀下列解題過程,然后解答問題(1)、(2)、(3).
例:解絕對值方程:|2x|=1.
解:討論:①當x≥0時,原方程可化為2x=1,它的解是x=
1
2

②當x<0時,原方程可化為-2x=1,它的解是x=-
1
2

∴原方程的解為x=
1
2
和-
1
2

問題(1):依例題的解法,方程|
1
2
x|
=3的解是
x=6和-6
x=6和-6
;
問題(2):嘗試解絕對值方程:2|x-2|=6;
問題(3):在理解絕對值方程解法的基礎(chǔ)上,解方程:|x-2|+|x-1|=3.

查看答案和解析>>

(2002•浙江)以x為自變量的二次函數(shù)y=-x2+2x+m,它的圖象與y軸交于點C(0,3),與x軸交于點A、B,點A在點B的左邊,點O為坐標原點,
(1)求這個二次函數(shù)的解析式及點A,點B的坐標,畫出二次函數(shù)的圖象;
(2)在x軸上是否存在點Q,在位于x軸上方部分的拋物線上是否存在點P,使得以A,P,Q三點為頂點的三角形與△AOC相似(不包含全等)?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

以x為自變量的二次函數(shù)y=-x2+2x+m,它的圖象與y軸交于點C(0,3),與x軸交于點A、B,點A在點B的左邊,點O為坐標原點,
(1)求這個二次函數(shù)的解析式及點A,點B的坐標,畫出二次函數(shù)的圖象;
(2)在x軸上是否存在點Q,在位于x軸上方部分的拋物線上是否存在點P,使得以A,P,Q三點為頂點的三角形與△AOC相似(不包含全等)?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案