24.(1)解:如圖3.連結(jié)OB.-----------1分 ∵⊙O的內(nèi)接△ABC中.∠BAC=45°.∴∠BOC=2∠BAC=90°.∵OB=OC.∴∠OBC=∠OCB=45°. ∵AD∥OC.∴∠D=∠OCB=45°.--------------------2分 (2)證明:∵∠BAC=45°.∠D=45°. ∴∠BAC=∠D.----------------------3分 ∵AD∥OC.西城區(qū)初三數(shù)學(xué)試卷答案及評(píng)分參考第4頁(yè) ∴∠ACE=∠DAC.------------------------4分∴△ACE∽△DAC. 查看更多

 

題目列表(包括答案和解析)

如圖,OB、OC分別為∠ABC,∠ACB的平分線,∠BOC隨著∠A的變化而變化.為探究∠A和∠BOC的關(guān)系,現(xiàn)采取如下兩種方案,在變化過(guò)程中,設(shè)∠A為x°,∠BOC為y°.
方案甲:用量角器量出∠A、∠BOC的不斷變化時(shí)的具體數(shù)據(jù),并列表如下:精英家教網(wǎng)
x 10 20 30 40
y 95 100 105 110
建立直角坐標(biāo)系,并描點(diǎn)、連線,猜測(cè)y與x之間的函數(shù)關(guān)系,求出y與x的函數(shù)關(guān)系式.
方案乙:利用角平分線的性質(zhì)及三角形內(nèi)角和為180°的性質(zhì),直接進(jìn)行計(jì)算,求出y與x之間的函數(shù)關(guān)系.
(1)若x=60°,則y=
 
.(請(qǐng)直接寫(xiě)精英家教網(wǎng)出結(jié)果)
(2)請(qǐng)采用方案甲或方案乙中的一種進(jìn)行解答,得到∠A與∠BOC之間的關(guān)系.

查看答案和解析>>

如圖,OB、OC分別為∠ABC,∠ACB的平分線,∠BOC隨著∠A的變化而變化.為探究∠A和∠BOC的關(guān)系,現(xiàn)采取如下兩種方案,在變化過(guò)程中,設(shè)∠A為x°,∠BOC為y°.
方案甲:用量角器量出∠A、∠BOC的不斷變化時(shí)的具體數(shù)據(jù),并列表如下:
x10203040
y95100105110
建立直角坐標(biāo)系,并描點(diǎn)、連線,猜測(cè)y與x之間的函數(shù)關(guān)系,求出y與x的函數(shù)關(guān)系式.
方案乙:利用角平分線的性質(zhì)及三角形內(nèi)角和為180°的性質(zhì),直接進(jìn)行計(jì)算,求出y與x之間的函數(shù)關(guān)系.
(1)若x=60°,則y=______.(請(qǐng)直接寫(xiě)出結(jié)果)
(2)請(qǐng)采用方案甲或方案乙中的一種進(jìn)行解答,得到∠A與∠BOC之間的關(guān)系.

查看答案和解析>>

如圖,OB、OC分別為∠ABC,∠ACB的平分線,∠BOC隨著∠A的變化而變化.為探究∠A和∠BOC的關(guān)系,現(xiàn)采取如下兩種方案,在變化過(guò)程中,設(shè)∠A為x°,∠BOC為y°.
方案甲:用量角器量出∠A、∠BOC的不斷變化時(shí)的具體數(shù)據(jù),并列表如下:
x10203040
y95100105110
建立直角坐標(biāo)系,并描點(diǎn)、連線,猜測(cè)y與x之間的函數(shù)關(guān)系,求出y與x的函數(shù)關(guān)系式.
方案乙:利用角平分線的性質(zhì)及三角形內(nèi)角和為180°的性質(zhì),直接進(jìn)行計(jì)算,求出y與x之間的函數(shù)關(guān)系.
(1)若x=60°,則y=______.(請(qǐng)直接寫(xiě)出結(jié)果)
(2)請(qǐng)采用方案甲或方案乙中的一種進(jìn)行解答,得到∠A與∠BOC之間的關(guān)系.

查看答案和解析>>

同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問(wèn)題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個(gè)問(wèn)題,我們不妨從最簡(jiǎn)單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長(zhǎng)是a,面積為S,顯然S=數(shù)學(xué)公式a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過(guò)點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos數(shù)學(xué)公式∠AOB=Rcos數(shù)學(xué)公式×120°=Rcos60°,
AM=OAsin∠AOM=Rsin數(shù)學(xué)公式∠AOB=Rsin數(shù)學(xué)公式×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=數(shù)學(xué)公式AB×OM=數(shù)學(xué)公式×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
數(shù)學(xué)公式a(h1+h2+h3)=3R2sin60°cos60°
即:數(shù)學(xué)公式×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過(guò)程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類(lèi)比上述探索過(guò)程,直接填寫(xiě)結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=________
正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=________
正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+…+hn=________.

查看答案和解析>>

同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問(wèn)題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個(gè)問(wèn)題,我們不妨從最簡(jiǎn)單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長(zhǎng)是a,面積為S,顯然S=a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過(guò)點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos∠AOB=Rcos×120°=Rcos60°,
AM=OAsin∠AOM=Rsin∠AOB=Rsin×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=AB×OM=×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
a(h1+h2+h3)=3R2sin60°cos60°
即:×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過(guò)程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類(lèi)比上述探索過(guò)程,直接填寫(xiě)結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=______
正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=______
正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=______.

查看答案和解析>>


同步練習(xí)冊(cè)答案