x1+x2=a.從而|x1-x2|==.∵-1≤a≤1.∴|x1-x2|=≤3∴ 要使不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1.1]恒成立.當(dāng)且僅當(dāng)m2+tm+1≥3對(duì)任意t∈[-1.1]恒成立.即m2+tm-2≥0對(duì)任意t∈[-1.1] 恒成立.x1x2=-2.. ②設(shè)g(t)=m2+tm-2=mt+(m2-2).方法一: 查看更多

 

題目列表(包括答案和解析)

(2012•漳州模擬)在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點(diǎn)A(x1,y1),B(x2,y2),若劣弧AB的長(zhǎng)為L(zhǎng),則
L
R
等于
OA 
, 
OB
夾角的弧度數(shù),從而cos
L
R
=
x1x2+y1y2
R2
.在空間直角坐標(biāo)系中,以原點(diǎn)為球心,半徑為R的球面上兩點(diǎn)A(x1,y1,z1),B(x2,y2,z2),若A、B兩點(diǎn)間的球面距離為L(zhǎng),則cos
L
R
等于
x1x2+y1y2+z1z2
R2
x1x2+y1y2+z1z2
R2

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點(diǎn)A(x1,y1),B(x2,y2),若劣弧AB的長(zhǎng)為L(zhǎng),則夾角的弧度數(shù),從而.在空間直角坐標(biāo)系中,以原點(diǎn)為球心,半徑為R的球面上兩點(diǎn)A(x1,y1,z1),B(x2,y2,z2),若A、B兩點(diǎn)間的球面距離為L(zhǎng),則等于   

查看答案和解析>>

在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點(diǎn)A(x1,y1),B(x2,y2),若劣弧AB的長(zhǎng)為L(zhǎng),則
L
R
等于
OA 
, 
OB
夾角的弧度數(shù),從而cos
L
R
=
x1x2+y1y2
R2
.在空間直角坐標(biāo)系中,以原點(diǎn)為球心,半徑為R的球面上兩點(diǎn)A(x1,y1,z1),B(x2,y2,z2),若A、B兩點(diǎn)間的球面距離為L(zhǎng),則cos
L
R
等于______.

查看答案和解析>>

在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點(diǎn)A(x1,y1),B(x2,y2),若劣弧AB的長(zhǎng)為L(zhǎng),則數(shù)學(xué)公式夾角的弧度數(shù),從而數(shù)學(xué)公式.在空間直角坐標(biāo)系中,以原點(diǎn)為球心,半徑為R的球面上兩點(diǎn)A(x1,y1,z1),B(x2,y2,z2),若A、B兩點(diǎn)間的球面距離為L(zhǎng),則數(shù)學(xué)公式等于________.

查看答案和解析>>


同步練習(xí)冊(cè)答案