題目列表(包括答案和解析)
設點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得
;
(2)當時,若,
求證:;
(3) 當時,某同學對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.
由拋物線定義得到
第二問設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點為,設,
分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設,分別過作拋物線的準線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點為,
設,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當時,該逆命題的一個反例.(反例不唯一)
② 設,分別過作
拋物線的準線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構造滿足條件且的一組個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標()滿足 ”,即:
“當時,若,且點的縱坐標()滿足,則”.此命題為真.事實上,設,
分別過作拋物線準線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補充條件2:“點與點為偶數(shù),關于軸對稱”,即:
“當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)
已知
(1)求函數(shù)在上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有成立
【解析】第一問中利用
當時,在單調(diào)遞減,在單調(diào)遞增,當,即時,,
第二問中,,則設,
則,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立,
第三問中問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設,,則,易得。當且僅當x=1時取得.從而對一切,都有成立
解:(1)當時,在單調(diào)遞減,在單調(diào)遞增,當,即時,,
…………4分
(2),則設,
則,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立, …………9分
(3)問題等價于證明,,
由(1)可知,的最小值為,當且僅當x=時取得
設,,則,易得。當且僅當x=1時取得.從而對一切,都有成立
2011年3月日本發(fā)生的9.0級地震引發(fā)了海嘯和核泄漏。核專家為檢測當?shù)貏游锸芎溯椛浜髮ι眢w健康的影響,隨機選取了110只羊進行檢測。其中身體健康的50只中有30只受到高度輻射,余下的60只身體不健康的羊中有10只受輕微輻射。
(1)作出2×2列聯(lián)表
(2)判斷有多大把握認為羊受核輻射對身體健康有影響?
【解析】本試題主要考查了列聯(lián)表的運用,以及判定兩個分類變量之間的相關性問題的運用首先根據(jù)題意得到2×2列聯(lián)表:,然后求解的觀測值為
因為,因此可知有99%的把握可以認為羊受核輻射對身體健康有影響。
解:(1)2×2列聯(lián)表:
輻射程度健康類型 |
高度輻射 |
輕微輻射 |
合 計 |
身體健康 |
30 |
20 |
50 |
身體不健康 |
50 |
10 |
60 |
合 計 |
80 |
30 |
110 |
--------5分
-
(Ⅱ)的觀測值為
-----9分
而
∴有99%的把握可以認為羊受核輻射對身體健康有影響。
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
設A是如下形式的2行3列的數(shù)表,
a |
b |
c |
d |
e |
f |
滿足性質(zhì)P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數(shù)之和(i=1,2), 為A的第j列各數(shù)之和(j=1,2,3)記為中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數(shù)表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)對所有滿足性質(zhì)P的2行3列的數(shù)表A,求的最大值。
【解析】(1)因為,,所以
(2),
因為,所以,
所以
當d=0時,取得最大值1
(3)任給滿足性質(zhì)P的數(shù)表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數(shù)換成它的相反數(shù),所得數(shù)表仍滿足性質(zhì)P,并且,因此,不妨設,,
由得定義知,,,,
從而
所以,,由(2)知,存在滿足性質(zhì)P的數(shù)表A使,故的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹?shù)倪壿嬎季S能力
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com