(Ⅱ)若外接圓半徑為1.求周長的取值范圍. 查看更多

 

題目列表(包括答案和解析)

△ABC中,數(shù)學公式=(sinA,cosC),數(shù)學公式=(cosB,sinA),數(shù)學公式數(shù)學公式=sinB+sinC.
(1)求證:△ABC為直角三角形;
(2)若△ABC外接圓半徑為1,求△ABC的周長的取值范圍.

查看答案和解析>>

△ABC中,=(sinA,cosC),=(cosB,sinA),=sinB+sinC.
(1)求證:△ABC為直角三角形;
(2)若△ABC外接圓半徑為1,求△ABC的周長的取值范圍.

查看答案和解析>>

的三內(nèi)角所對邊的長分別為,已知,

(1)已知函數(shù),、是方程的兩根,求的外接圓的半徑.

(2)若,求的最大值;

(3)若,求的周長的最小值.

查看答案和解析>>

的三內(nèi)角所對邊的長分別為,已知,
(1)已知函數(shù),、是方程的兩根,求的外接圓的半徑.
(2)若,求的最大值;
(3)若,求的周長的最小值.

查看答案和解析>>

△ABC中,
m
=(sinA,cosC),
n
=(cosB,sinA),
m
n
=sinB+sinC.
(1)求證:△ABC為直角三角形;
(2)若△ABC外接圓半徑為1,求△ABC的周長的取值范圍.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,滿分60分,在每小題給出的四個選項中,只有一項是符合題目要求的。

    1.C    2.C    3.C    4.C    5.A    6.D    7.A    8.A    9.B   

10.D   11.A   12.B

二、填空題:本大題4共小題,每小題5分。

   13.    14.    15.     16.①④

三、解答題(解答應寫出文字說明,證明過程或演算步驟)

 

17.(I)

由余弦定理得

整理得得。

,故為直角三角形

(Ⅱ)設內(nèi)角對邊的邊長分別是

外接圓半徑為1,

周長的取值范圍

18.(I)證明:,

(Ⅱ)解:設A

設點到平面的距離為,

(Ⅲ解:設軸建立空間直角坐標宿,為計算方便,不妨設

要使二面角的大小為120°,則

即當時,二面角的大小為120°

19.(I)記“廠家任意取出4件產(chǎn)品檢驗,其中至少有一件是合格品“為事件A,

(Ⅱ)的可能取值為0,1,2,

所以的概率分布為

 

 

0

1

2

 

 

 

 

 

 

20.(I)設

(Ⅱ)曲線向左平移1一個單位,得到曲線的方程為

(1)當

(2)當

(Ⅲ)

21.(I)

(Ⅱ)令

(Ⅲ)用數(shù)學歸納法證明

請考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題記分,做答時,用2B鉛筆在答題卡上把所選題目對應的題號涂黑。

 

22.

23.(I)為參數(shù),為傾斜角,且

(Ⅱ)

24.

   

 


同步練習冊答案