在周長為定值的△ABC中.已知|AB|=6.且當頂點C位于定點P時.cosC有最小值為.(1).建立適當?shù)淖鴺讼?求頂點C的軌跡方程. 查看更多

 

題目列表(包括答案和解析)

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關(guān)于直線l的對稱點A′.

②連結(jié)A′B,交直線l于點P.

則點P為所求.

請你參考小明的作法解決下列問題:

(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

 

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖

痕跡,不寫作法)                  

②請直接寫出△PDE周長的最小值        .

(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側(cè),且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值      .

 

 

 

查看答案和解析>>

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關(guān)于直線l的對稱點A′.
②連結(jié)A′B,交直線l于點P.
則點P為所求.

請你參考小明的作法解決下列問題:
(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖
痕跡,不寫作法)                  
②請直接寫出△PDE周長的最小值        .
(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側(cè),且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值     .

查看答案和解析>>

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關(guān)于直線l的對稱點A′.
②連結(jié)A′B,交直線l于點P.
則點P為所求.

請你參考小明的作法解決下列問題:
(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖
痕跡,不寫作法)                  
②請直接寫出△PDE周長的最小值        .
(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側(cè),且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值     .

查看答案和解析>>

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關(guān)于直線l的對稱點A′.

②連結(jié)A′B,交直線l于點P.

則點P為所求.

請你參考小明的作法解決下列問題:

(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

 

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖

痕跡,不寫作法)                  

②請直接寫出△PDE周長的最小值         .

(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側(cè),且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值      .

 

 

 

查看答案和解析>>

小明在學習軸對稱的時候,老師留了這樣一道思考題:如圖,已知在直線l的同側(cè)有A、B兩點,請你在直線l上確定一點P,使得PA+PB的值最小.小明通過獨立思考,很快得出了解決這個問題的正確方法,他的作法是這樣的:

①作點A關(guān)于直線l的對稱點A′.
②連結(jié)A′B,交直線l于點P.
則點P為所求.

請你參考小明的作法解決下列問題:
(1)如圖,在△ABC中,點D、E分別是AB、AC邊的中點,BC=6,BC邊上的高為4,請你在BC邊上確定一點P,使得△PDE的周長最小.

①在圖1中作出點P.(三角板、刻度尺作圖,保留作圖
痕跡,不寫作法)                  
②請直接寫出△PDE周長的最小值        .
(2)如圖在矩形ABCD中,AB=4,BC=6,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側(cè),且EF=1,當四邊形CGEF的周長最小時,請你在圖2中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法),并直接寫出四邊形CGEF周長的最小值     .

查看答案和解析>>


同步練習冊答案