信息一:如果投資種產(chǎn)品.則所獲利潤與投資金額之間存在著正比例函數(shù)關(guān)系.且當(dāng)投資5萬元時.可獲利潤2萬元, 查看更多

 

題目列表(包括答案和解析)

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):

信息一:如果單獨投資種產(chǎn)品,則所獲利潤(萬元)與投資金額(萬元)之間存在正比例函數(shù)關(guān)系:,并且當(dāng)投資5萬元時,可獲利潤2萬元.

信息二:如果單獨投資種產(chǎn)品,則所獲利潤(萬元)與投資金額(萬元)之間存在二次函數(shù)關(guān)系:,并且當(dāng)投資2萬元時,可獲利潤2.4萬元;當(dāng)投資4萬元時,可獲利潤3.2萬元.

(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;

(2)如果企業(yè)同時對兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當(dāng)投資5萬元時,可獲利潤2萬元;
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當(dāng)投資2萬元時,可獲利潤2.4萬元;當(dāng)投資4萬元,可獲利潤3.2萬元.
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;
(2)如果企業(yè)同時對A、B兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當(dāng)投資5萬元時,可獲利潤2萬元;
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當(dāng)投資2萬元時,可獲利潤2.4萬元;當(dāng)投資4萬元,可獲利潤3.2萬元.
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;
(2)如果企業(yè)同時對A、B兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當(dāng)投資5萬元時,可獲利潤2萬元.
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當(dāng)投資2萬元時,可獲利潤2.4萬元;當(dāng)投資4萬元時,可獲利潤3.2萬元.
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;
(2)如果企業(yè)同時對A,B兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當(dāng)投資5萬元時,可獲利潤2萬元;
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當(dāng)投資2萬元時,可獲利潤2.4萬元;當(dāng)投資4萬元,可獲利潤3.2萬元.
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;
(2)如果企業(yè)同時對A、B兩種產(chǎn)品共投資10萬元,請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>


同步練習(xí)冊答案