17.已知:如圖6.在△ABC中.∠ABC=90°.以點C為圓心.AC長為半徑畫弧.點D為圓弧上一點.且∠ACD=90°.過點D作直線BC的垂線DF.垂足為F.求證:. 查看更多

 

題目列表(包括答案和解析)

如圖,客輪沿折線A-B-C從A出發(fā)經B再到C勻速航行,貨輪從AC的中點D出發(fā)沿某一方向勻速直線航行,將一批物品送達客輪。兩船同時起航,并同時到達折線A-B-C的某點E處,已知AB=BC=200海里,∠ABC=90°,客輪速度是貨輪速度的2倍。

(1)選擇:兩船相遇之處E點(      )。

A、在線段AB上    B、在線段BC上   C、可以在線段AB上,也可以在線段BC上

(2)求貨輪從出發(fā)到兩船相遇共航行了多少海里?(結果保留根號)。

查看答案和解析>>

如圖(1),在Rt△ABC, ∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結AD、CF,AD與CF交于點M。

(1)求證:△ABD≌△FBC;

(2)如圖(2),已知AD=6,求四邊形AFDC的面積;

(3)在△ABC中,設BC=a,AC=b,AB=c,當∠ACB≠90°時,c2≠a2 +b2。在任意△ABC中,c2=a2 +b2+k。就a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結論即可)。

 

查看答案和解析>>

如圖(1),在Rt△ABC, ∠ACB=90°,分別以AB、BC為一邊向外作正方形ABFG、BCED,連結AD、CF,AD與CF交于點M。

(1)求證:△ABD≌△FBC;
(2)如圖(2),已知AD=6,求四邊形AFDC的面積;
(3)在△ABC中,設BC=a,AC=b,AB=c,當∠ACB≠90°時,c2≠a2+b2。在任意△ABC中,c2=a2+b2+k。就a=3,b=2的情形,探究k的取值范圍(只需寫出你得到的結論即可)。

查看答案和解析>>

如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜邊上的中點.

如圖②,若整個△EFG從圖①的位置出發(fā),以1cm/s 的速度沿射線AB方向平移,在△EFG 平移的同時,點P從△EFG的頂點G出發(fā),以1cm/s 的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),FG的延長線交 AC于H,(不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC ?

(2)你能不能用含x的式子來表示四邊形OAHP面積呢?若能,請表示;若不能,請說明理由。

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13∶24?若存在,求出x的值;若不存在,說明理由.(參考數據:1142 =12996,1152 =13225,1162 =13456或4.42 =19.36,4.52 =20.25,4.62 =21.16)

        

查看答案和解析>>


同步練習冊答案