(1)求此拋物線的解析式,(2)點M為拋物線上的一個動點.求使△ABM與△ABD的面積相等的點M的坐標. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3),
(1)求二次函數(shù)y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到B、C兩點距離之差最大?若存在,求出P點坐標;若不存在,請說明理由;
(3)平行于x軸的一條直線交拋物線于M、N兩點,若以MN為直徑的圓恰好與x軸相切,求此圓的半徑.

查看答案和解析>>

拋物線y=ax2+2ax+b與直線y=x+1交于A、C兩點,與y軸交于B,AB∥x軸,且S△ABC=3,A點坐標為(-2,b).
精英家教網(wǎng)精英家教網(wǎng)
(1)求拋物線的解析式;
(2)P為x軸負半軸上一點,以AP、AC為邊作平行四邊形CAPQ,是否存在P,使得Q點恰好在此拋物線上?若存在,請求出P、Q的坐標;若不存在,請說明理由;
(3)AD⊥x軸于D,以O(shè)D為直徑作⊙M,N為⊙M上一動點,(不與O、D重合),過N作AN的垂線交x軸于R點,DN交y軸于點S,當(dāng)N點運動時,線段OR、OS是否存在確定的數(shù)量關(guān)系寫出證明.

查看答案和解析>>

拋物線y=
1
6
x2+bx+c
與x軸交于A,B兩點,其中A點坐標為A(2,0),與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)點Q(8,m)在拋物線y=
1
6
x2+bx+c
上,點P為此拋物線對稱軸上一個動點,求PQ+PB的最小值;
(3)以點M(4,0)為圓心、2為半徑,在x軸下方作半圓,CE是過點C的半圓的切線,E為切點,求OE所在直線的解析式.

查看答案和解析>>

拋物線y=
1
2
x2+(k+
1
2
)x+(k+1)(k為常數(shù))與x軸交于A(x1,0)、B(x2,0)(x1<0<x2)兩點,與y軸交于C點,且滿足(OA+OB)2=OC2+16.
(1)求此拋物線的解析式;
(2)設(shè)M、N是拋物線在x軸上方的兩點,且到x軸的距離均為1,點P是拋物線的頂點,問:過M、N、C三點的圓與直線CP是否只有一個公共點C?試證明你的結(jié)論.

查看答案和解析>>

拋物線y=ax2+bx+c(a>0)的頂點為B(-1,m)(m≠0),并且經(jīng)過點A(-3,0).
(1)求此拋物線的解析式(系數(shù)和常數(shù)項用含m的代數(shù)式表示);
(2)若由點A、原點O與拋物線上的一點P所構(gòu)成的三角形是等腰直角三角形,求m的值.

查看答案和解析>>


同步練習(xí)冊答案