題目列表(包括答案和解析)
在中,已知 ,面積,
(1)求的三邊的長;
(2)設是(含邊界)內的一點,到三邊的距離分別是
①寫出所滿足的等量關系;
②利用線性規(guī)劃相關知識求出的取值范圍.
【解析】第一問中利用設中角所對邊分別為
由得
又由得即
又由得即
又 又得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結合區(qū)域得到最值。
在中,是三角形的三內角,是三內角對應的三邊,已知成等差數列,成等比數列
(Ⅰ)求角的大;
(Ⅱ)若,求的值.
【解析】第一問中利用依題意且,故
第二問中,由題意又由余弦定理知
,得到,所以,從而得到結論。
(1)依題意且,故……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入得
如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進,以后又改成正東方向航行,但不知最初的方向和何時改變方向.現(xiàn)要去營救,請用圖表示營救的區(qū)域.
已知中,,.設,記.
(1) 求的解析式及定義域;
(2)設,是否存在實數,使函數的值域為?若存在,求出的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在中,由,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得.顯然,,則
1當m>0的值域為m+1=3/2,n=1/2
2當m<0,不滿足的值域為;
因而存在實數m=1/2的值域為.
已知函數,
(1)設常數,若在區(qū)間上是增函數,求的取值范圍;
(2)設集合,,若,求的取值范圍.
【解析】本試題主要考查了三角函數的性質的運用以及集合關系的運用。
第一問中利用
利用函數的單調性得到,參數的取值范圍。
第二問中,由于解得參數m的取值范圍。
(1)由已知
又因為常數,若在區(qū)間上是增函數故參數
(2)因為集合,,若
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com