故.又. 查看更多

 

題目列表(包括答案和解析)

中,已知 ,面積

(1)求的三邊的長;

(2)設(含邊界)內的一點,到三邊的距離分別是

①寫出所滿足的等量關系;

②利用線性規(guī)劃相關知識求出的取值范圍.

【解析】第一問中利用設中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結合區(qū)域得到最值。

 

查看答案和解析>>

中,是三角形的三內角,是三內角對應的三邊,已知成等差數列,成等比數列

(Ⅰ)求角的大;

(Ⅱ)若,求的值.

【解析】第一問中利用依題意,故

第二問中,由題意又由余弦定理知

,得到,所以,從而得到結論。

(1)依題意,故……………………6分

(2)由題意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進,以后又改成正東方向航行,但不知最初的方向和何時改變方向.現(xiàn)要去營救,請用圖表示營救的區(qū)域.

查看答案和解析>>

已知中,,.設,記.

(1)   求的解析式及定義域;

(2)設,是否存在實數,使函數的值域為?若存在,求出的值;若不存在,請說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得,

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當m>0的值域為m+1=3/2,n=1/2

2當m<0,不滿足的值域為;

因而存在實數m=1/2的值域為.

 

查看答案和解析>>

已知函數,

(1)設常數,若在區(qū)間上是增函數,求的取值范圍;

(2)設集合,,若,求的取值范圍.

【解析】本試題主要考查了三角函數的性質的運用以及集合關系的運用。

第一問中利用

利用函數的單調性得到,參數的取值范圍。

第二問中,由于解得參數m的取值范圍。

(1)由已知

又因為常數,若在區(qū)間上是增函數故參數 

 (2)因為集合,若

 

查看答案和解析>>


同步練習冊答案