題目列表(包括答案和解析)
閱讀材料:多邊形的頂點(diǎn)、邊上或內(nèi)部的一點(diǎn)與多邊形各頂點(diǎn)的連線(xiàn),能夠?qū)⒍噙呅畏指畛扇舾蓚(gè)小三角形。如圖給出了四邊形的具體分割方法,分別將四邊形分割成2個(gè)、3個(gè)、4個(gè)小三角形,可以得到四邊形的內(nèi)角和為360°。
(1)請(qǐng)你按照上述方法將圖中的五邊形進(jìn)行分割,并寫(xiě)出得到的小三角形的個(gè)數(shù);
分別分割成 、 、 個(gè)小三角形;
(2)試把這一結(jié)論推廣至邊形,分別寫(xiě)出按照上述三種分割方法得到的小三角形的個(gè)數(shù)(按規(guī)律寫(xiě)出結(jié)論即可,可以不畫(huà)圖),并根據(jù)其中的一種分割方法推導(dǎo)出邊形的內(nèi)角和(畫(huà)出示意圖)。
邊形:分割成 、 、 個(gè)小三角形。試推導(dǎo)邊形的內(nèi)角和。
問(wèn)題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問(wèn)題解決
如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類(lèi)比應(yīng)用
【小題1】已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a.試比較M與N的大小.
【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿(mǎn)足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,使得△ABC的兩個(gè)頂
點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形的這一邊的對(duì)邊上。
①這樣的長(zhǎng)方形可以畫(huà) 個(gè);
②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最?為什么?
拓展延伸
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿(mǎn)足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?
【問(wèn)題提出】我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問(wèn)題解決】如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:,.
∴.
∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類(lèi)比應(yīng)用】(1)已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿(mǎn)足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,
使得△ABC的兩個(gè)頂點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落
在長(zhǎng)方形的這一邊的對(duì)邊上。
①這樣的長(zhǎng)方形可以畫(huà) 個(gè);
②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最小?為什么?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿(mǎn)足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?
【問(wèn)題提出】我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問(wèn)題解決】如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:,.
∴.
∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類(lèi)比應(yīng)用】(1)已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿(mǎn)足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,
使得△ABC的兩個(gè)頂點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落
在長(zhǎng)方形的這一邊的對(duì)邊上。
①這樣的長(zhǎng)方形可以畫(huà) 個(gè);
②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最小?為什么?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿(mǎn)足a <b < c ,畫(huà)其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com