設(shè)拋物線y=ax
2+bx+c與X軸交于兩不同的點(diǎn)A(-1,0),B(m,0),(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為點(diǎn)C(0,-2),且∠ACB=90°.
(1)求m的值和該拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一點(diǎn),且橫坐標(biāo)為1,點(diǎn)E為過A點(diǎn)的直線y=x+1與該拋物線的另一交點(diǎn).在X軸上是否存在點(diǎn)P,使得以P、B、D為頂點(diǎn)的三角形與△AEB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)連接AC、BC,矩形FGHQ的一邊FG在線段AB上,頂點(diǎn)H、Q分別在線段AC、BC上,若設(shè)F點(diǎn)坐標(biāo)為(t,0),矩形FGHQ的面積為S,當(dāng)S取最大值時,連接FH并延長至點(diǎn)M,使HM=k•FH,若點(diǎn)M不在該拋物線上,求k的取值范圍.