(I) 若曲線在處與直線相切.求的值, 查看更多

 

題目列表(包括答案和解析)

已知曲線f(x)=x3+bx2+cx在點我A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個極值點為x=0.
(I)求實數(shù)b,c的值;
(II )若函數(shù)y=f(x)(x∈[-數(shù)學公式,3])的圖象與直線y=m恰有三個交點,求實數(shù)m的取值范圍;
(III)若存在x0∈[1,e](e是自然對數(shù)的底數(shù),e=2.71828…),使得數(shù)學公式f′(x0)+alnx0≤ax0成立(其中f′(x)為函數(shù)f(x)的導(dǎo)函數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

已知曲線f(x)=x3+bx2+cx在點我A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個極值點為x=0.
(I)求實數(shù)b,c的值;
(II )若函數(shù)y=f(x)(x∈[-
1
2
,3])的圖象與直線y=m恰有三個交點,求實數(shù)m的取值范圍;
(III)若存在x0∈[1,e](e是自然對數(shù)的底數(shù),e=2.71828…),使得
1
6
f′(x0)+alnx0≤ax0成立(其中f′(x)為函數(shù)f(x)的導(dǎo)函數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

已知曲線f(x)=x3+bx2+cx在點我A(-1,f(-1)),B(3,f(3))處的切線互相平行,且函數(shù)f(x)的一個極值點為x=0.
(I)求實數(shù)b,c的值;
(II )若函數(shù)y=f(x)(x∈[-,3])的圖象與直線y=m恰有三個交點,求實數(shù)m的取值范圍;
(III)若存在x∈[1,e](e是自然對數(shù)的底數(shù),e=2.71828…),使得f′(x)+alnx≤ax成立(其中f′(x)為函數(shù)f(x)的導(dǎo)函數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=ex+ax,g(x)=exlnx.(e≈2.71828)
(I)設(shè)曲線y=f(x)在點(1,f(1))x=1處的切線為l,若l與圓相切,求a的值;
(II)若對于任意實數(shù)x≥0,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(III)當a=-1時,是否存在實數(shù)x∈[1,e],使曲線C:y=g(x)-f(x)在點x=x處的切線與Y軸垂直?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f (x)=lnx,g(x)=ex
( I)若函數(shù)φ (x)=f (x)-數(shù)學公式,求函數(shù)φ (x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)的圖象上一點A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

查看答案和解析>>

一、選擇題:

ACBDA       CBADB       CC

二、填空題:

13. 3   14.  10      15.6ec8aac122bd4f6e    16. 6ec8aac122bd4f6e

三、解答題:

17.解;  (I)

      6ec8aac122bd4f6e

它的最小正周期6ec8aac122bd4f6e

(II)由(I)及6ec8aac122bd4f6e得,

6ec8aac122bd4f6e

6ec8aac122bd4f6e

由正弦定理,得6ec8aac122bd4f6e

18.解法一

(I)由已知。BC//AE,則AE與SB所成的角等于BC與SB所成的角。

連結(jié)SC. 由題設(shè),6ec8aac122bd4f6e為直二面角S-AE-C的平面角,于是EA、EC、ES兩兩互相垂直。

6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e中, 6ec8aac122bd4f6e6ec8aac122bd4f6e

易見,6ec8aac122bd4f6e平面6ec8aac122bd4f6e , 則6ec8aac122bd4f6e平面6ec8aac122bd4f6e,從而6ec8aac122bd4f6e

6ec8aac122bd4f6e中,6ec8aac122bd4f6e

所以AE與SB所成角的大小為6ec8aac122bd4f6e

(II)6ec8aac122bd4f6e平面6ec8aac122bd4f6e,6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e

6ec8aac122bd4f6e于O,則6ec8aac122bd4f6e平面6ec8aac122bd4f6e,作6ec8aac122bd4f6e于F,連結(jié)AF, 則6ec8aac122bd4f6e

6ec8aac122bd4f6e為二面角A-SB-E的平面角

6ec8aac122bd4f6e中,6ec8aac122bd4f6e

因為6ec8aac122bd4f6e,所以6ec8aac122bd4f6e,則6ec8aac122bd4f6e

6ec8aac122bd4f6e

故二面角A-SB-E的大小為6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

 

 

 

 

 

 

 

解法二:

(I)有題設(shè),為直二面角S-AE-C的平面角,于是EA、EC、ES兩兩互相垂直,

      建立如圖所示的空間直角坐標系6ec8aac122bd4f6e,其中,

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

   所以,AE與SB所成角的大小為6ec8aac122bd4f6e

(II)設(shè)6ec8aac122bd4f6e為,面SBE的法向量,則6ec8aac122bd4f6e,且6ec8aac122bd4f6e

6ec8aac122bd4f6e

設(shè)6ec8aac122bd4f6e為面SAB的法向量,則6ec8aac122bd4f6e,且6ec8aac122bd4f6e

6ec8aac122bd4f6e

以內(nèi)二面角A-SB-E為銳角,所以其大小為6ec8aac122bd4f6e

19.解:

6ec8aac122bd4f6e的可能值為,1,2,3,其中

  6ec8aac122bd4f6e

6ec8aac122bd4f6e的分布列為

6ec8aac122bd4f6e

1

2

3

P

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e的期望6ec8aac122bd4f6e

20.解:

(I)6ec8aac122bd4f6e

依題意,曲線6ec8aac122bd4f6e與直線6ec8aac122bd4f6e相切于6ec8aac122bd4f6e,所以

6ec8aac122bd4f6e

 (II)

(1)當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增,在6ec8aac122bd4f6e處取得最大值

(2)當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,不在6ec8aac122bd4f6e處取得最大值

(3)當6ec8aac122bd4f6e時。由6ec8aac122bd4f6e,得6ec8aac122bd4f6e;由6ec8aac122bd4f6e,得6ec8aac122bd4f6e

所以6ec8aac122bd4f6e6ec8aac122bd4f6e單調(diào)遞減,在6ec8aac122bd4f6e單調(diào)遞增

此時,6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e處取得最大值,所以當且僅當6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e處取得最大值,此時解得6ec8aac122bd4f6e

綜上,6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e

21.解:

  (I)由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,代入6ec8aac122bd4f6e,得6ec8aac122bd4f6e

設(shè)6ec8aac122bd4f6e,則6ec8aac122bd4f6e是這個一元二次方程的兩個根,

6ec8aac122bd4f6e    ①

6ec8aac122bd4f6e,及6ec8aac122bd4f6e,得6ec8aac122bd4f6e

由根與系數(shù)的關(guān)系,得

6ec8aac122bd4f6e         ②

6ec8aac122bd4f6e     ③

由②式得6ec8aac122bd4f6e,代入③式,得6ec8aac122bd4f6e  

6ec8aac122bd4f6e   ④

6ec8aac122bd4f6e,及①、④,得6ec8aac122bd4f6e

解不等式組,得6ec8aac122bd4f6e

所以6ec8aac122bd4f6e的取值范圍是6ec8aac122bd4f6e

(II)

     6ec8aac122bd4f6e

22.解:(I)

(Ⅰ)0<an1f(an)即0<an1<,∴>+2,+1>3(+1),

當n≥2時,+1>3(+1)>32(+1)>…>3n1(+1)=3n≥32=9,

∴an

(Ⅱ)bng(an)=2f(an)==,

S1=<,

當n≥2時,由(Ⅰ)的證明,知<,

Sn<+++…+==(1-)<.

綜上,總有Sn<(n∈N*


同步練習冊答案