(2)如圖②.若P點(diǎn)是和外角的角平分線的交點(diǎn).則: 查看更多

 

題目列表(包括答案和解析)

如圖,正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動時(shí),保持AM和MN垂直.
(1)求證:Rt△ABM∽Rt△MCN;
(2)若MN的延長線交正方形外角平分線CP于點(diǎn)P,當(dāng)點(diǎn)M在BC邊上如圖位置時(shí),請你在AB邊上找到一點(diǎn)H,使得AH=MC,連接HM,進(jìn)而判斷AM與PM的大小關(guān)系,并說明理由;
(3)若BM=1,則梯形ABCN的面積為(     );設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(4)當(dāng)M點(diǎn)運(yùn)動到什么位置時(shí)Rt△ABM∽Rt△AMN,求此時(shí)BM的值.

查看答案和解析>>

如圖,正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動時(shí),保持AM和MN垂直.
(1)求證:Rt△ABM∽Rt△MCN;
(2)若MN的延長線交正方形外角平分線CP于點(diǎn)P,當(dāng)點(diǎn)M在BC邊上如圖位置時(shí),請你在AB邊上找到一點(diǎn)H,使得AH=MC,連接HM,進(jìn)而判斷AM與PM的大小關(guān)系,并說明理由;
(3)若BM=1,則梯形ABCN的面積為______;設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(4)當(dāng)M點(diǎn)運(yùn)動到什么位置時(shí)Rt△ABM∽Rt△AMN,求此時(shí)BM的值.

查看答案和解析>>

如圖1,過△ABC的三個頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:

如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.

(1)求拋物線和直線AB的解析式;

(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個動點(diǎn),連結(jié)PAPB,當(dāng)P點(diǎn)運(yùn)動到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD;

  (3)是否存在一點(diǎn)P,使SPAB=SCAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

如圖1,過△ABC的三個頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個動點(diǎn),連結(jié)PAPB,當(dāng)P點(diǎn)運(yùn)動到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD
  (3)是否存在一點(diǎn)P,使SPAB=SCAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

如圖1,過△ABC的三個頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個動點(diǎn),連結(jié)PA,PB,當(dāng)P點(diǎn)運(yùn)動到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD;
  (3)是否存在一點(diǎn)P,使SPAB=SCAB,若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案