方法二:設與關于中心對稱.并且在.所以就有.由.得 查看更多

 

題目列表(包括答案和解析)

(2013•萊蕪二模)設橢圓的中心為坐標原點O,焦點在x軸上,焦距為2,F(xiàn)為右焦點,B1為下頂點,B2為上頂點,SB1FB2=1
(I)求橢圓的方程;
(Ⅱ)若直線l同時滿足下列三個條件:①與直線B1F平行;②與橢圓交于兩個不同的點P、Q;③S△POQ=
23
,求直線l的方程.

查看答案和解析>>

(2009•崇明縣二模)設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的一個頂點坐標為A(0,-
2
),且其右焦點到直線y-x-2
2
=0
的距離為3.
(1)求橢圓C的軌跡方程;
(2)若A、B是橢圓C上的不同兩點,弦AB(不平行于y軸)的垂直平分線與x軸相交于點M,則稱弦AB是點M的一條“相關弦”,如果點M的坐標為M(
1
2
,0
),求證點M的所有“相關弦”的中點在同一條直線上;
(3)根據(jù)解決問題(2)的經(jīng)驗與體會,請運用類比、推廣等思想方法,提出一個與“相關弦”有關的具有研究價值的結論,并加以解決.(本小題將根據(jù)所提出問題的層次性給予不同的分值)

查看答案和解析>>

(08年黃岡中學二模)函數(shù)關于直線對稱的函數(shù)為,又函數(shù)的導函數(shù)為,記

  (1)設曲線在點處的切線為,若與圓相切,求的值;

   (2)求函數(shù)的單調(diào)區(qū)間;

   (3)求函數(shù)在[0,1]上的最大值;

查看答案和解析>>

下列說法中錯誤的是(    )

A.如果變量η與ξ之間存在著線性相關關系,則我們根據(jù)實驗數(shù)據(jù)得到的點(xi,yi)(i=1,2, …,n)將散布在某一條直線的附近

B.如果兩個變量η與ξ之間不存在著線性相關關系,那么根據(jù)它們的一組數(shù)據(jù)(xi,yi)(i=1,2, …,n)不能寫出一個線性方程

C.設x,y是具有相關關系的兩個變量,且x關于y的線性回歸方程為=bx+a,b叫做回歸系數(shù)

D.為使求出的線性回歸方程有意義,可用統(tǒng)計假設檢驗的方法來判定變量η與ξ之間是否存在線性相關關系

查看答案和解析>>

(本小題滿分12分)

某市為了對學生的數(shù)理(數(shù)學與物理)學習能力進行分析,從10000名學生中隨機抽出100位學生的數(shù)理綜合學習能力等級分數(shù)(6分制)作為樣本,分數(shù)頻數(shù)分布如下表:

等級得分

人數(shù)

3

17

30

30

17

3

(Ⅰ)如果以能力等級分數(shù)大于4分作為良好的標準,從樣本中任意抽。裁麑W生,求恰有1名學生為良好的概率;

(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:

(ⅰ)據(jù)此,計算這100名學生數(shù)理學習能力等級分數(shù)的期望及標準差(精確到0.1);

(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學生中數(shù)理學習能力等級在范圍內(nèi)的人數(shù) .

(Ⅲ)從這10000名學生中任意抽取5名同學,

他們數(shù)學與物理單科學習能力等級分

數(shù)如下表:

(。┱埉嫵錾媳頂(shù)據(jù)的散點圖;

(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程(附參考數(shù)據(jù):

 

 

查看答案和解析>>


同步練習冊答案