題目列表(包括答案和解析)
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點, A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是 ,b= ,c= ;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點, A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是 ,b= ,c= ;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點, A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是_ _,b=_ _,c=_ _;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.
如圖,在平面直角坐標(biāo)系中,以點C(0,4)為圓心,半徑為4的圓交y軸正半軸于點A,AB是⊙C的切線.動點P從點A開始沿AB方向以每秒1個單位長度的速度運動,點Q從O點開始沿x軸正方向以每秒4個單位長度的速度運動,且動點P、Q從點A和點O同時出發(fā),設(shè)運動時間為t(秒).
(1)當(dāng)t=1時,得P1、Q1兩點,求過A、P1、Q1三點的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,PC⊥QC;此時直線PQ與⊙C是什么位置關(guān)系?請說明理由;
(3)在(2)的條件下,(1)中的拋物線對稱軸l上存在一點N,使得NP+NQ最小,求出點N的坐標(biāo).
說明:對于解題過程中有的題目可用多種解法(或多種證明方法),如果考生的解答與參考答案不同,請參照此評分標(biāo)準(zhǔn)酌情給分.
一. 選擇題(本題共10小題,每小題4分,共40分)
題號
1
2
3
4
5
6
7
8
9
10
答案
C
A
B
B
D
B
A
D
C
C
評分標(biāo)準(zhǔn)
選對一題給4分,不選,多選,錯選均不給分
二、填空題(本題有6小題,每小題5分,共30分)
11.X≠6 ; 12. 2; 13.8; 14. 65°;
15.96 ; 16. (0,0),(0,),(0,-3)寫對一個給3分,兩個4分,三個給5分
三、解答題(本題有8小題,共80分)
17. (本題8分)
(1)解:原式=1+3- …………(3分)
= …………(1分)
(2)解:愿方程可化為:x=3(x-2 ) …………(2分)
x=3 …………(1分)
經(jīng)檢驗 :x=3 是原方程的解. …………(1分)
18.(本題8分)
添加條件例舉:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等. ……(2分)
證明例舉(以添加條件AD=BC為例):
∵ AB=AB,∠1=∠2,BC=AD, …………(2分)
∴ △ABC≌△BAD. …………(2分)
∴ AC=BD. …………(2分)
19.(本題8分)
(1); …………(3分)
(2)列對表格或畫對樹狀圖; …………(3分)
兩次都取到歡歡的概率為. …………(2分)
20.(本題8分)
答案不唯一.只要符合要求,畫對一個給4分,畫對兩個給8分. ……(8分)
21.(本題8分)
(1)∵AB是⊙O直徑,∴∠ACB=Rt∠.∴sin∠BAC=. ………(3分)
(2)∵OE⊥AC,O是⊙O的圓心, ∴E是AC中點.∴OE=BC=. …(3分)
(3)∵AC==4, ∴tan∠ADC= tan∠ABC=. ……(2分)
22.(本題10分)
(1) 25 ; ……………(2分)
(2) 50; ……………(2分)
畫對條形統(tǒng)計圖 ……………(2分)
(3)5人;(列對方程得2分,給出答案給2分) ……………(4分)
23.(本題12分)
(1); ………………(2分)
(2)-x2+2x ,1, ; (每格2分) ……………(6分)
(3)設(shè)AB長為m,那么AD為
S=?=-. ……………(2分)
當(dāng)=時,S最大. ……………(2分)
24.(本題14分)
(1)直線AB解析式為:y=x+. ……………(3分)
(2)方法一:設(shè)點C坐標(biāo)為(x,x+),那么OD=x,CD=x+.
∴==. ………(2分)
由題意: =,解得(舍去) ………(2分)
∴。茫ǎ,) ………(1分)
方法二:∵ ,=,∴.…(2分)
由OA=OB,得∠BAO=30°,AD=CD.
∴ =CD×AD==.可得CD=. ………(2分)
∴ AD=1,OD=2.∴C(2,). ………(1分)
(3)當(dāng)∠OBP=Rt∠時,如圖
①若△BOP∽△OBA,則∠BOP=∠BAO=30°,BP=OB=3,
∴(3,). ……(2分)
②若△BPO∽△OBA,則∠BPO=∠BAO=30°,OP=OB=1.
∴(1,). …………(1分)
當(dāng)∠OPB=Rt∠時
③ 過點P作OP⊥BC于點P(如圖),此時△PBO∽△OBA,∠BOP=∠BAO=30°
過點P作PM⊥OA于點M.
方法一: 在Rt△PBO中,BP=OB=,OP=BP=.
∵ 在Rt△PMO中,∠OPM=30°,
∴ OM=OP=;PM=OM=.∴(,). ……(1分)
方法二:設(shè)P(x ,x+),得OM=x ,PM=x+
由∠BOP=∠BAO,得∠POM=∠ABO.
∵tan∠POM=== ,tan∠ABOC==.
∴x+=x,解得x=.此時,(,). ……(1分)
④若△POB∽△OBA(如圖),則∠OBP=∠BAO=30°,∠POM=30°.
∴ PM=OM=.
∴ (,)(由對稱性也可得到點的坐標(biāo)).…………(2分)
當(dāng)∠OPB=Rt∠時,點P在x軸上,不符合要求.
綜合得,符合條件的點有四個,分別是:
(3,),(1,),(,),(,).
注:四個點中,求得一個P點坐標(biāo)給2分,兩個給3分,三個給4分,四個給6分.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com