0  444356  444364  444370  444374  444380  444382  444386  444392  444394  444400  444406  444410  444412  444416  444422  444424  444430  444434  444436  444440  444442  444446  444448  444450  444451  444452  444454  444455  444456  444458  444460  444464  444466  444470  444472  444476  444482  444484  444490  444494  444496  444500  444506  444512  444514  444520  444524  444526  444532  444536  444542  444550  447090 

1.下列在廚房中發(fā)生的變化是物理變化的是

A.榨取果汁       B.冬瓜腐爛     C.鐵鍋生銹      D.煤氣燃燒

試題詳情

29.問題解決

解:方法一:如圖(1-1),連接

 

    由題設(shè),得四邊形和四邊形關(guān)于直線對稱.

    ∴垂直平分.∴··········································· 1分

    ∵四邊形是正方形,∴

    ∵設(shè)

     在中,

    ∴解得,即················································ 3分

    在和在中,

,

,

······································································· 5分

    設(shè)

    解得················································································· 6分

    ∴··································································································· 7分

    方法二:同方法一,········································································· 3分

    如圖(1-2),過點于點,連接

 

∴四邊形是平行四邊形.

    ∴

    同理,四邊形也是平行四邊形.∴

  ∵

  

  在

  ····························· 5分

······························································ 6分

································································································· 7分

類比歸納

(或);·········································································· 10分

聯(lián)系拓廣

···································································································· 12分

試題詳情

26.(1)解:由點坐標(biāo)為

點坐標(biāo)為

··················································································· (2分)

解得點的坐標(biāo)為···································· (3分)

··························································· (4分)

  (2)解:∵點上且

       ∴點坐標(biāo)為······················································································ (5分)

又∵點上且

點坐標(biāo)為······················································································ (6分)

··········································································· (7分)

  (3)解法一:當(dāng)時,如圖1,矩形重疊部分為五邊形(時,為四邊形).過,則

 

··································································· (10分)

(2009年山西省太原市)29.(本小題滿分12分)

問題解決

如圖(1),將正方形紙片折疊,使點落在邊上一點(不與點,重合),壓平后得到折痕.當(dāng)時,求的值.

 

類比歸納

在圖(1)中,若的值等于     ;若的值等于     ;若(為整數(shù)),則的值等于     .(用含的式子表示)

聯(lián)系拓廣

  如圖(2),將矩形紙片折疊,使點落在邊上一點(不與點重合),壓平后得到折痕設(shè)的值等于     .(用含的式子表示)

 

試題詳情

26.(2009年山西省)(本題14分)如圖,已知直線與直線相交于點分別交軸于兩點.矩形的頂點分別在直線上,頂點都在軸上,且點與點重合.

   (1)求的面積;

(2)求矩形的邊的長;

(3)若矩形從原點出發(fā),沿軸的反方向以每秒1個單位長度的速度平移,設(shè)

移動時間為秒,矩形重疊部分的面積為,求關(guān)

的函數(shù)關(guān)系式,并寫出相應(yīng)的的取值范圍.

試題詳情

23.(2009年河南省)(11分)如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bxA、C兩點.  

(1)直接寫出點A的坐標(biāo),并求出拋物線的解析式;

   (2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD

向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點PPEABAC于點E

   ①過點EEFAD于點F,交拋物線于點G.當(dāng)t為何值時,線段EG最長?

②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?

請直接寫出相應(yīng)的t值.

解.(1)點A的坐標(biāo)為(4,8)         …………………1分

將A  (4,8)、C(8,0)兩點坐標(biāo)分別代入y=ax2+bx

       8=16a+4b

     得             

     0=64a+8b

     解 得a=-,b=4

∴拋物線的解析式為:y=-x2+4x      …………………3分

(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=

PE=AP=t.PB=8-t

∴點E的坐標(biāo)為(4+t,8-t).

∴點G的縱坐標(biāo)為:-(4+t)2+4(4+t)=-t2+8. …………………5分

∴EG=-t2+8-(8-t)

   =-t2+t.

∵-<0,∴當(dāng)t=4時,線段EG最長為2.       …………………7分

②共有三個時刻.                  …………………8分

t1=,  t2=t3= .          …………………11分

試題詳情

26.解:(1)1,;

(2)作QFAC于點F,如圖3, AQ = CP= t,∴

由△AQF∽△ABC,

.∴

,

(3)能.

  ①當(dāng)DEQB時,如圖4.

  ∵DEPQ,∴PQQB,四邊形QBED是直角梯形.

   此時∠AQP=90°.

由△APQ ∽△ABC,得,

. 解得

②如圖5,當(dāng)PQBC時,DEBC,四邊形QBED是直角梯形.

此時∠APQ =90°.

由△AQP ∽△ABC,得 ,

. 解得.                                                

(4)

[注:①點PCA運動,DE經(jīng)過點C

方法一、連接QC,作QGBC于點G,如圖6.

,

,得,解得

方法二、由,得,進而可得

,得,∴.∴

②點PAC運動,DE經(jīng)過點C,如圖7.

,]

試題詳情

26.(2009年河北省)(本小題滿分12分)

如圖16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.點P從點C出發(fā)沿CA以每秒1個單位長的速度向點A勻速運動,到達點A后立刻以原來的速度沿AC返回;點Q從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線QB-BC-CP于點E.點P、Q同時出發(fā),當(dāng)點Q到達點B時停止運動,點P也隨之停止.設(shè)點P、Q運動的時間是t秒(t>0).

(1)當(dāng)t = 2時,AP =    ,點QAC的距離是   

(2)在點PCA運動的過程中,求△APQ的面積S

t的函數(shù)關(guān)系式;(不必寫出t的取值范圍)

(3)在點EBC運動的過程中,四邊形QBED能否成

為直角梯形?若能,求t的值.若不能,請說明理由;

(4)當(dāng)DE經(jīng)過點C 時,請直接寫出t的值.

試題詳情

26.解:(1)由已知,得,,

.············································································································ (1分)

設(shè)過點的拋物線的解析式為

將點的坐標(biāo)代入,得

和點的坐標(biāo)分別代入,得

··································································································· (2分)

解這個方程組,得

故拋物線的解析式為.··························································· (3分)

(2)成立.························································································· (4分)

在該拋物線上,且它的橫坐標(biāo)為,

的縱坐標(biāo)為.······················································································· (5分)

設(shè)的解析式為,

將點的坐標(biāo)分別代入,得

  解得

的解析式為.········································································ (6分)

,.··························································································· (7分)

過點于點,

,

,

.··········································································································· (8分)

(3)上,,,則設(shè)

,

①若,則,

解得,此時點與點重合.

.··········································································································· (9分)

②若,則,

解得 ,,此時軸.

與該拋物線在第一象限內(nèi)的交點的橫坐標(biāo)為1,

的縱坐標(biāo)為

.······································································································· (10分)

③若,則,

解得,,此時,是等腰直角三角形.

過點軸于點,

,設(shè),

解得(舍去).

.··········································· (12分)

綜上所述,存在三個滿足條件的點,

(2009年重慶綦江縣)26.(11分)如圖,已知拋物線經(jīng)過點,拋物線的頂點為,過作射線.過頂點平行于軸的直線交射線于點,軸正半軸上,連結(jié)

(1)求該拋物線的解析式;

(2)若動點從點出發(fā),以每秒1個長度單位的速度沿射線運動,設(shè)點運動的時間為.問當(dāng)為何值時,四邊形分別為平行四邊形?直角梯形?等腰梯形?

(3)若,動點和動點分別從點和點同時出發(fā),分別以每秒1個長度單位和2個長度單位的速度沿運動,當(dāng)其中一個點停止運動時另一個點也隨之停止運動.設(shè)它們的運動的時間為,連接,當(dāng)為何值時,四邊形的面積最。坎⑶蟪鲎钚≈导按藭r的長.

*26.解:(1)拋物線經(jīng)過點,

·························································································· 1分

二次函數(shù)的解析式為:·················································· 3分

(2)為拋物線的頂點,則,

··················································· 4分

當(dāng)時,四邊形是平行四邊形

················································ 5分

當(dāng)時,四邊形是直角梯形

,

(如果沒求出可由)

····························································································· 6分

當(dāng)時,四邊形是等腰梯形

綜上所述:當(dāng)、5、4時,對應(yīng)四邊形分別是平行四邊形、直角梯形、等腰梯形.·· 7分

(3)由(2)及已知,是等邊三角形

,則········································································· 8分

=·································································································· 9分

當(dāng)時,的面積最小值為··································································· 10分

此時

······················································ 11分

試題詳情

26.(2009年重慶市)已知:如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OA=2,OC=3.過原點O作∠AOC的平分線交AB于點D,連接DC,過點DDEDC,交OA于點E

(1)求過點ED、C的拋物線的解析式;

(2)將∠EDC繞點D按順時針方向旋轉(zhuǎn)后,角的一邊與y軸的正半軸交于點F,另一邊與線段OC交于點G.如果DF與(1)中的拋物線交于另一點M,點M的橫坐標(biāo)為,那么EF=2GO是否成立?若成立,請給予證明;若不成立,請說明理由;

(3)對于(2)中的點G,在位于第一象限內(nèi)的該拋物線上是否存在點Q,使得直線GQAB的交點P與點C、G構(gòu)成的△PCG是等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

 

試題詳情

25.(2009年北京)如圖,在平面直角坐標(biāo)系中,三個機戰(zhàn)的坐標(biāo)分別為

,,延長AC到點D,使CD=,過點D作DE∥AB交BC的延長線于點E.

(1)求D點的坐標(biāo);

(2)作C點關(guān)于直線DE的對稱點F,分別連結(jié)DF、EF,若過B點的直線將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;

(3)設(shè)G為y軸上一點,點P從直線與y軸的交點出發(fā),先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短。(要求:簡述確定G點位置的方法,但不要求證明)

試題詳情


同步練習(xí)冊答案