如圖,在直角形△ABC中,角C=90°,AC=2,BC=1,D在AC上.將△ADB沿直線BD翻折后,點A落在點E處.如果AD⊥ED,則△ABE的面積為
 
考點:相似三角形的性質(zhì)(份數(shù)、比例)
專題:傳統(tǒng)應(yīng)用題專題
分析:先根據(jù)勾股定理計算出AB=
5
,根據(jù)折疊的性質(zhì)得BE=BA=
5
,DA=DE,由于AD⊥ED得BC∥DE,可得△BCD是等腰直角三角形,CD=1,AD=1,繼而求得△ABE的面積.
解答: 解:由勾股定理得:AB=
AC2+BC2
=
4+1
=
5

∵△ADB沿直線BD翻折后,點A落在點E處,
∴△ABD≌△BDE,
∴BE=BA=
5
,∠BDA=∠BDE=135°,
又∵AD⊥ED,∴BC∥DE,所以△BCD是等腰直角三角形∴BC=CD=1,
所以S△BDE=S△ABD=
1
2
AD×BC=
1
2
×1×1=
1
2
,
同理可得:S△ADE=
1
2
AD×DE=
1
2
×1×1=
1
2

所以△ABE的面積是
3
2

故答案為:
3
2
點評:本題考查了折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等性質(zhì)的綜合應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖平均分成
 
份,每份是它的
(  )
(  )
,陰影部分是
 
1
(  )
,是它的
(  )
(  )

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

已知18×14=252,那么18×28=
 
,18×7=
 
,36×28=
 

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

一個梯形的上、下底的和是25分米,高是8分米,這個梯形的面積是
 
平方分米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

下面的算式中,每個字代表一個數(shù)字,不同的字代表不同的數(shù)字.求“走”+“進”+“美”+“妙”+“數(shù)”+“學(xué)”+“花”+“園”+“好”等于
 

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

王阿姨購回一批兒童鞋,加價15%后定價出售,每雙46元,這種兒童鞋的進價是
 

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

有一盒黃球,我隨手摸出一個,一定不是
 
球.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

450×60的積的末尾有
 
個0.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

有一個棱長為4cm的立方體,如圖所示,棱FG的中點為M,棱HG的中點為N.那么,△CMN的面積為
 
平方厘米.

查看答案和解析>>

同步練習(xí)冊答案