如圖中,正方形ABCD的邊長是8厘米,AM長是10厘米.求DF的長.

解:過M點做MG垂直AD于G,則MG為三角形AMD的高,且MG=AB=8厘米,
10×DF÷2=8×8÷2,
10DF=64,
DF=64÷10,
DF=6.4.
答:DF長是6.4厘米.
分析:過M點做MG垂直AD于G,則MG為三角形AMD的高,且MG=AB=8厘米,在三角形AMD中,利用面積公式S=ab÷2,即可求出DF的長度.
點評:本題主要是添加輔助線,幫助分析題意,利用在三角形中面積一定,即對應的底乘對應的高的一半相等,求出高DF的長度.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

如圖中,邊長為10和15的兩個正方形并放在一起,求三角形ABC(陰影部分)的面積.(單位:cm)

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

在平面內,旋轉變換試指某一個圖形繞一個定點按順時針或逆時針旋轉一定的角度而得到新位置圖形的一種變換.

活動一:如圖①,在Rt△ABC中,D為斜邊AB上的一點,AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時,小明運用圖形旋轉的方法,將△DBF繞點D逆時針旋轉90°,得到△DGE(如圖②所示),小明一眼就看到答案,請你寫出陰影部分的面積
1
1

活動二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點A作AE⊥BC,垂足為點E,小明仍運用圖形旋轉的方法,將△ABE繞點A逆時針旋轉90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:
正方形
正方形
;
(2)AE的長是
4
4

活動三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點B逆時針旋轉90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

(2013?浠水縣)如圖中的小方格是邊長為l厘米的小正方形,A點用數(shù)對(2,5)表示,在圖中找出用數(shù)對(4,4)表示的C點,并求出三角形ABC的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

(2012?臺州)如圖,在正方形方格中,每個小正方形的邊長為1厘米,三角形ABC的頂點在方格點上.
(1)用數(shù)對表示三角形ABC的三個頂點的位置:A(4,
5
5
);B(
1
1
,2);C(
5
5
,
2
2
).
(2)將三角形ABC向右平移9格,得到一個新的三角形A’B’C’.請畫出三角形A78 7C7,并求出三角形ABC在平移到三角形A’B’C’過程中所掃過的面積.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:解答題

在平面內,旋轉變換試指某一個圖形繞一個定點按順時針或逆時針旋轉一定的角度而得到新位置圖形的一種變換.

活動一:如圖①,在Rt△ABC中,D為斜邊AB上的一點,AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時,小明運用圖形旋轉的方法,將△DBF繞點D逆時針旋轉90°,得到△DGE(如圖②所示),小明一眼就看到答案,請你寫出陰影部分的面積______.
活動二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過點A作AE⊥BC,垂足為點E,小明仍運用圖形旋轉的方法,將△ABE繞點A逆時針旋轉90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:______;
(2)AE的長是______.
活動三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點B逆時針旋轉90°得到線段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

同步練習冊答案