將下列分?jǐn)?shù)表示成兩個(gè)整數(shù)相除的式子
8
7
=
8÷7
8÷7
,②
4
1
=
4÷1
4÷1
,
2007
2008
=
2007÷2008
2007÷2008
,④
1
7
=
1÷7
1÷7
分析:把分?jǐn)?shù)寫成兩個(gè)數(shù)相除的式子的方法是:用分子做除法算式中的被除數(shù),分母做除法算式中的除數(shù),分?jǐn)?shù)線變成除號(hào);據(jù)此進(jìn)行轉(zhuǎn)化.
解答:解:①
8
7
=8÷7;
4
1
=4÷1;
2007
2008
=2007÷2008;
1
7
=1÷7.
故答案為:8÷7;4÷1;2007÷2008;1÷7.
點(diǎn)評(píng):此題考查分?jǐn)?shù)與除法的互化:分子做除法算式中的被除數(shù),分?jǐn)?shù)線變成除號(hào),分母做除法算式中的除數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題:在下面括號(hào)里填上適當(dāng)?shù)淖匀粩?shù),使等式成立.
1
6
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=.
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )

分析:把
1
6
表示成兩個(gè)單位分?jǐn)?shù)(分子為1的分?jǐn)?shù))的和,可以這樣考慮:若兩個(gè)加數(shù)相同,則
1
6
=
1×2
6×2
=
1
12
+
1
12
;
若兩個(gè)加數(shù)不相同,可利用分?jǐn)?shù)的基本性質(zhì)將分?jǐn)?shù)的分子、分母擴(kuò)大相同的倍數(shù),再將分子拆成兩個(gè)自然數(shù)的和,即:
1
6
=
1×A
6×A
=
B+C
6A
=
B
6A
+
C
6A
(A=B+C,A、B、C是自然數(shù)),若B、C是6的約數(shù),則
B
6A
、
C
6A
可以化成單位分?jǐn)?shù).
所以
1
6
=
1
12
+
1
12
=
1
15
+
1
10
=
1
18
+
1
9
=
1
24
+
1
8
=
1
42
+
1
7
;
根據(jù)對(duì)上述材料的理解完成下列各題:
(1)在下面括號(hào)里填上相同的自然數(shù),使等式成立
1
10
=
1
(   )
+
1
(   )

(2)已知
1
10
=
1
A
+
1
B

(A、B是不相等的自然數(shù))求所有滿足條件A、B的值.(直接寫出答案).

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問(wèn)題:在下面括號(hào)里填上適當(dāng)?shù)淖匀粩?shù),使等式成立.
1
6
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=.
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )
=
1
(  )
+
1
(  )

分析:把
1
6
表示成兩個(gè)單位分?jǐn)?shù)(分子為1的分?jǐn)?shù))的和,可以這樣考慮:若兩個(gè)加數(shù)相同,則
1
6
=
1×2
6×2
=
1
12
+
1
12

若兩個(gè)加數(shù)不相同,可利用分?jǐn)?shù)的基本性質(zhì)將分?jǐn)?shù)的分子、分母擴(kuò)大相同的倍數(shù),再將分子拆成兩個(gè)自然數(shù)的和,即:
1
6
=
1×A
6×A
=
B+C
6A
=
B
6A
+
C
6A
(A=B+C,A、B、C是自然數(shù)),若B、C是6的約數(shù),則
B
6A
、
C
6A
可以化成單位分?jǐn)?shù).
所以
1
6
=
1
12
+
1
12
=
1
15
+
1
10
=
1
18
+
1
9
=
1
24
+
1
8
=
1
42
+
1
7
;
根據(jù)對(duì)上述材料的理解完成下列各題:
(1)在下面括號(hào)里填上相同的自然數(shù),使等式成立
1
10
=
1
(   )
+
1
(   )

(2)已知
1
10
=
1
A
+
1
B

(A、B是不相等的自然數(shù))求所有滿足條件A、B的值.(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊(cè)答案