解:(1)x+3.4x=28.6,
4.4x=28.6,
4.4x÷4.4=28.6÷4.4,
x=6.5;
(2)x-0.78x=0.33,
0.22x=0.33,
0.22x÷0.22=0.33÷0.22,
x=1.5;
(3)7x-2x=25.5,
5x=25.5,
5x÷5=25.5÷5,
x=5.1;
(4)3.6x+2.9x=4.55,
6.5x=4.55,
6.5x÷6.5=4.55÷6.5,
x=0.7.
分析:(1)原式變?yōu)?.4x=28.6,根據(jù)等式的性質(zhì),兩邊同除以4.4即可;
(2)原式變?yōu)?.22x=0.33,根據(jù)等式的性質(zhì),兩邊同除以0.22即可;
(3)原式變?yōu)?x=25.5,根據(jù)等式的性質(zhì),兩邊同除以5即可;
(4)原式變?yōu)?.5x=4.55,根據(jù)等式的性質(zhì),兩邊同除以6.5即可.
點評:在解方程時應(yīng)根據(jù)等式的性質(zhì),即等式兩邊同加上、同減去、同乘上或同除以某一個數(shù)(0除外),等式的兩邊仍相等,同時注意“=”上下要對齊.